

SFA Modernization Partner
United States Department of Education
Student Financial Assistance

Integrated Technical Architecture
Detailed Design Document

Volume 1 – Conceptual Architecture

Task Order #16

Deliverable # 16.1.2

October 13, 2000

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 i

Table of Contents

1 PREFACE ..1

1.1. ABOUT THIS DOCUMENT ..1
1.2. INTENDED AUDIENCE..1
1.3. RELATED DOCUMENTATION...1
1.4. ARCHITECTURAL ASSUMPTIONS ..1
1.5. ISSUES...1
1.6. TBD ITEMS ..2

2 INTRODUCTION...3

2.1. BUSINESS IMPERATIVES ..3
2.2. INTEGRATED TECHNICAL ARCHITECTURE STRATEGY ...3
2.3. DESIGN POINTS ..4

2.3.1. Legacy Reuse ...4
2.3.2. Distributed Component Architecture..4
2.3.3. Layered Architecture ...5
2.3.4. Platform Independence..5
2.3.5. Core Support for Open/Industry Standards ...6
2.3.6. Separation of Responsibilities...6

2.4. A COMPONENT-BASED TECHNICAL ARCHITECTURE ...7

3 SELECTING STANDARD COMPONENT ARCHITECTURAL PATTERNS9

3.1. DISTRIBUTED N-TIER CLIENT SERVER ARCHITECTURE...9
3.1.1. N-Tier Architecture..9
3.1.2. Client Server Architecture...10
3.1.3. Distributed System...10

3.2. ‘MODEL VIEW CONTROLLER’ ARCHITECTURAL PATTERN..10
3.2.1. Advantages of the Model-View-Controller Pattern ...11

3.3. FAT CLIENT VS. THIN CLIENT – THE ADVANTAGE OF THE WEB BROWSER CLIENT12
3.3.1. Web Browser Client Advantages ...12

4 THE ITA CONCEPTUAL ARCHITECTURE...13

4.1. THE SFA ARCHITECTURE DOMAINS..13
4.2. PRODUCT TO DOMAIN MAPPING ..15
4.3. SFA DOMAIN ARCHITECTURE TOPOLOGIES ...17

4.3.1. The End-to-End Architecture Topology ...17
4.3.2. Internet Architecture Topology...17
4.3.3. The EAI Architecture Domain Topology..20
4.3.4. The Enterprise Data Domain Topology ...21

5 TECHNICAL ARCHITECTURE SCENARIOS..24

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 ii

5.1. OVERVIEW OF TECHNICAL ARCHITECTURE SCENARIOS ..24
5.1.1. Scenario #1: Browser Based Thin Client Accessing Business Application Components 24
5.1.2. Scenario #2: Batch Applications Accessing Business Application Components..............30
5.1.3. Scenario #3: Business Application Components Coordinating Legacy Updates34
5.1.4. Scenario #4: Legacy Application Coordinating Business Application Components.......38
5.1.5. Scenario #5: Using the Internet Portal to Search Content..43
5.1.6. Scenario #6: Data Population Using an ETL Process..49
5.1.7. Scenario #7: Coordinating Transaction Processing ...54
5.1.8. Scenario #8: Accessing Applications Through The DMZ ...62

6 CONCLUSION..67

7 ACRONYMS ...68

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 i

List of Figures
Figure 1 - Correlation between Business and IT Model Layers..3

Figure 2 - Layered Component Architecture..5

Figure 3 - Component Architecture..8

Figure 4 - N-Tier Client Server Architecture...9

Figure 5 - Model View Controller Pattern...11

Figure 6 – The Four Domains of the SFA Architecture ..14

Figure 7 – Future SFA COTS Integration Points..15

Figure 8 – End-to-End ITA Topology...17

Figure 9 – Internet Architecture Topology..18

Figure 10 – ITA Internet Domain Architecture Product Mapping ..20

Figure 11 - ITA EAI Domain Architecture Product Mapping ..21

Figure 12 - ITA Enterprise Data Domain Architecture Product Mapping...................................23

Figure 13 - Scenario #1 (Thin Client Accessing Business Application Components)................26

Figure 14 - Scenario #2 Batch Client Accessing Business Application Components32

Figure 15 - Business Application Components Coordinating Legacy Updates..........................36

Figure 16 – Legacy Applications Coordinating Business Application Components.................40

Figure 17 – Searching Content using the SFA Portal ..45

Figure 18 – Intranet and Internet Execution Topology...46

Figure 19 – Analyzing Data Warehouses using the SFA Portal ...48

Figure 20 – The Extract, Transform and Load Process ...49

Figure 21 – Data Propagation within SFA using an ETL Process ..52

Figure 22 - Coordinating Transactions within the Enterprise...54

Figure 23 - Coordinating Transactions between the MQSI and Business Object Servers.56

Figure 24 - Single EDD Transactions Translate into Multiple Messages......................................58

Figure 25- Exception Flow for Transactions that Originate from the MQSI Server59

Figure 26 - Exception Flow for Transactions that Originate from the CB Server........................60

Figure 27 - Scenario #8 (Accessing Applications Through The DMZ) ...64

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 i

List of Tables
Table 1 – Integrated Technical Architecture Product to Domain Map ...15

Table 2 - Technical Architecture Scenarios..24

Table 3 - Scenario #1 Programming Languages and APIs ..25

Table 4 - Scenario #1 Protocols ..25

Table 5 - Scenario #2 Programming Languages and APIs ..30

Table 6 - Scenario #2 Protocols ..31

Table 7 - Scenario #3 Programming Languages and API’s ...34

Table 8 - Scenario #3 Protocols ..35

Table 9 - Scenario #4 Programming Languages and API’s ...38

Table 10 - Scenario #4 Protocols ..39

Table 11 - Scenario #5 Programming Languages and API’s ...43

Table 12 - Scenario #5 Protocols ..44

Table 13 - Scenario #6 Programming Languages and API’s ...51

Table 14 - Scenario #6 Protocols ..51

Table 15 - Scenario #6 Programming Languages and API’s ...55

Table 16 - Scenario #7 Protocols ..55

Table 17 Scenario #8 Programming Languages and APIs...62

Table 18 - Scenario #8 Protocols ..63

Table 19 – List of Acronyms...68

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 1

1 Preface

1.1. About This Document
The purpose of this document is to provide the architectural foundation on which future
applications at Department of Education (DOE) are to be developed. This document is
intended to provide Department of Education’s application architects with a blue print for
developing systems which meet the company’s long term computing goals. It is not the
purpose of this document to provide an exhaustive inventory of Student Financial Assistance
(SFA) existing application portfolio, nor is the intent of this document to address in a
complete manner all aspects of the application development life cycle. Each element of the
architecture described herein requires logical predecessor / follow-on activities to ensure
their realisation, adoption and risk management.

1.2. Intended Audience
This document has been developed to provide Information Technology (IT) managers and
architects with a conceptual understanding of Department of Education’s Enterprise
Technical Architecture (ETA). This document could also be used to train new development
staff about Department of Education’s architectural goals and conceptual computing
topologies.

1.3. Related Documentation
• Department of Education Task Order 4

1.4. Architectural Assumptions
The following list describes those assumptions on which the technical architecture was based.

• Department of Education is moving toward a web centric self-service computing
environment.

• Department of Education’s goal is to implement an autonomous Enterprise Data Model
supported by a data warehouse.

• The standard transport protocol between client and servers will be Transmission Control
Protocol / Internet Protocol (TCP/IP) with in Department of Education’s distributed
architecture. Systems Network Architecture (SNA) will be used within the OS/390
environment.

1.5. Issues
The following issues were unresolved when this version of the technical architecture
document was completed:

• None

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 2

1.6. TBD Items
The following items affect the implementation of this design and have yet to be defined and
will be included in a subsequent release of this design:

• None

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 3

2 Introduction

2.1. Business Imperatives
The following business imperatives resulted in the necessity for the Department of Education
SFA to move to an alternative technical architecture for enterprise computing.

• Technological changes that resulted in competitive pressures specifically the Internet.

• An aging IT infrastructure that is not capable of keeping pace with changing business
requirements.

• SFA needed to more closely align their IT model with the business model.

By mirroring the functional layers of the Business Model the IT Model can be closely aligned
and a successful technical architecture can be designed. The correlation between the layers of
the Business Model and the IT Model is depicted in Figure 1.

Common Services

Services

Flow

Data
Customer DB
Inventory DB
Accounting DB
External Data Flow

Directory
Naming
Security
Event

Basic Business
Objects
Application Objects
Application Services

Work Flow
Groupware
Knowledgeware

Business
Information

Communication

Business
Services

Business
Processes

Data

Customer Information
Inventory
Accounting

Information exchange
required to meet
business needs

Discrete business
services offered by
organizational units

Movement of information
between organizations
required to meet
business goals

Disburse Loan
Subscribe Student
Inform Loan
Orginator

Process SFA Request
Request Financial Aid
Information
Add Financial Program

Loan Programs
Student Profile
Educational Inst. Profile

Business Model IT Model

Figure 1 - Correlation between Business and IT Model Layers

2.2. Integrated Technical Architecture Strategy
The Department of Education’s Integrated Technical Architecture (ITA) is driven by a need
to create an environment that facilitates the integration of disparate data resources, business
services and process automation thereby eliminating the barriers created by the following:

• Heterogeneous computing architectures

• Heterogeneous hardware platforms

• Heterogeneous operating systems

• Heterogeneous network configurations, topologies and protocols

• Heterogeneous representations of the same data within the enterprise

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 4

In order to meet these goals the architectural implementation must be flexible, easily
modified and provide for reuse as the following changes to the enterprise computing
environment are introduced:

• A shift in business processes

• Additional data resources

• Future technology shifts

• A move to provide self-service access to SFA

2.3. Design Points
The following requirements and qualifying factors influenced the design of Department of
Education’s SFA Integrated Technical Architecture.

2.3.1. Legacy Reuse
The Department of Education’s current architecture consists of well-established legacy
applications and services that are based on a centralized 2 tiered architecture. The future
architecture must be able to leverage and extend this investment while enabling a flexible
approach to implementing the proposed architecture. While a move to implement the
proposed architecture in a short period of time is desirable, reality dictates that the current
computing infrastructure will remain until the proposed architecture can be designed,
prototyped and successfully implemented. Indeed some elements of the current
infrastructure may remain after implementing an interface to extend services into the
proposed architecture.

In order to facilitate business process modeling and data independence, additional data
repositories will be implemented over time. The additional repositories will include Data
Warehouses, Data Marts and Operational Data Stores (ODS). For simplicity these new data
stores will be referred to as the Enterprise Data Domain (EDD). The EDD will support a more
normalized enterprise data schema than the Legacy Data Domain (LDD). Once
implemented, and supported by the proper services the official instances of data will be
those stored in the EDD. While current infrastructure components may remain until
deprecated, data integrity must be maintained between stores for all data duplicated in both
repositories (LDD and EDD).

2.3.2. Distributed Component Architecture
A Component is a piece of software that extends a known interface and provides a set of
services. Services can only be provided to the client if the component interface requirements
are properly satisfied. A distributed component is a service or application that is based on
one or more components that are geographically distributed. The term geographically
distributed refers to the architectural topology not necessarily the physical location.
Distributed components could reside on the same system but reside in different regions.
Distributed components must have the ability to intercommunicate in a physically and
geographically distributed environment.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 5

Distributed Components allow processing to be shared among multiple computers (or
logical segments) with each computer in the network handling that portion of the overall
work for which it is best suited. Distributed Components provide an excellent boundary and
segmentation for implementing WorkLoad Management (WLM). Distributed Components
will allow Department of Education to scale services using WLM and Load Balancing.

2.3.3. Layered Architecture
A layered architecture helps to provide structure to applications and services that can be
decomposed into groups of subtasks in which each group of subtasks is at a particular level
of abstraction. An example of a layered architecture is depicted in Figure 2. A layered
architecture based on ever increasing abstractions of the previous layers has the following
characteristics:

• Increased reusability between layers

• Decrease in ripple effect changes

• Easily modified

• Support for standardization

• Exchangeability with other implementations

StudentBusiness
Objects

Application
Objects

Financial Inst. Loan
Programs Loan Options

addFinanInst
getFinanInst
queryFinanInst

addProgram
getProgram
queryProgram

addOptions
getOption
queryOption

addStudent
getStudent
queryStudent

Request Process
Service

Loan Disbursement
Service

Business Process Flow
Student Financial
AID Request

Financial
Disbursement

Work
Flow

Figure 2 - Layered Component Architecture

2.3.4. Platform Independence
With the advent of client-server computing and the Internet came the need to support
different hardware and OS platforms when considering a technical architecture to support

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 6

the enterprise. The predominant platforms currently used by Department of Education are as
follows:

• OS 390

• VAX/VMS

• UNIX – Solaris, HP/UX

• MS-Windows, NT/2000/95/98

The target architecture must be able to support a single development and programming
environment. Applications must be deployable on each platform with a minimum of change
(if any).

2.3.5. Core Support for Open/Industry Standards
Basing the future technical architecture on Open Industry Standards increases Department of
Education’s ability to utilize and interact with third party products. In Addition, utilizing
Open Industry Standards keeps The Department of Education from being locked into any
one vendor’s solution. As part of Task Order (TO) 4, the SFA Partners selected a set of
products that support DOE requirements and support open industry standards. This
document defines the technical architecture mandated by the products selected in Task
Order 4. A list of the standard products may be found in the TO-4 deliverables.

2.3.6. Separation of Responsibilities
The distributed component model drives decoupling the client interface framework from the
business logic and data. This decoupling helps to provide a separation of responsibilities
between the development staff. This allows client developers to concentrate on client
frameworks and presentation logic while business logic developers work on application
components. The following is a list of possible staff positions resulting from the
implementation of this architecture:

• The Client Developer is responsible for developing the user interface and the client
frameworks that provides a higher level of abstraction for accessing objects and services
using the underlying common services. Typically Client Developers will also develop
application client frameworks based on the Presentation-Abstraction-Control (PAC)
pattern. The PAC pattern provides an abstraction that separates the human-computer
interaction from the information-processing components thereby increasing modularity
and reuse.

• The Business Object Developer is responsible for implementing the business logic using
a particular component model. For example, Enterprise Java Beans (EJB) or Common
Object Request Broker Architecture (CORBA). These components include basic business
components, business application components and business integration components.
This responsibility includes the process of wrapping back end data stores using object
relational mapping techniques. Often this responsibility is separated into another
development role called the Data Object Developer.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 7

• The Data Object Developer or Deployment Developer is responsible for defining the
semantic mapping and construction of wrapping back end resource managers
[transactional and relational data stores] using object mapping techniques.

• The Common Services Developer is responsible for administrating and coordinating
middleware services with the implementation of business applications. These
middleware services are often referred to as common services. They provide crucial
services to the applications such as directory services (Lightweight Directory Access
Protocol (LDAP)) or security (Kerberos). In some cases this developer must help
implement frameworks to provide access to common services that require unsupported
or enterprise specific application interfaces.

• The traditional Database Developer is responsible for implementing enterprise data
schemas and maintaining both the data and performance integrity of the databases. This
is still true in a component-based development environment with the exception of some
additional responsibilities. These additional responsibilities include working with the
Business Object Developer to establish a schema that facilitates an object relational
mapping of business components. Often object relational mapping requires some
normalization tradeoffs that the Database Developer must realize and support. The
Database developer should have some training in the development of business
components.

2.4. A Component-Based Technical Architecture
Department of Education’s future Technical Architecture is based on using components as
building blocks to develop applications and services. EJB will be the primary standard
component model used within SFA. The underlying services used by the Enterprise Java
Server (EJS) and all EJBs will be supplied by CORBA services. In some cases SFA developers
may supplement the EJB components with CORBA Business Objects. The technique of using
components as building blocks to implement services is often referred to as a ‘component
framework’ or in the Object-Oriented (OO) world an ‘application framework.’ Essentially, a
component framework extends a set of interfaces and provides a well known set of services
which are dictated by roles of interaction that govern how components ‘plugged into’ the
framework may interact (Figure 3). The components that arise from this definition have the
following characteristics:

• Are independent units of deployment

• Are units of third-party composition

• Has no persistent state as a whole

While the use of an object oriented programming model is not required in order to
implement a component, Department of Education will standardize on the use of an object
oriented programming language to implement components. Where possible the standard
object oriented programming language will be Java. However, it is acceptable to use C++ in
cases where only C/C++ programming Application Program Interfaces (API) are available.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 8

Common Services / Operating System
Operating
System

Application

Application

Components
do not need to
be system-
aware.

Linked Library
Application

90% of all I/S shops will adopt compnent-based development models within two years.
By 2001, 75% of all new applications will be deployed via component technology. Source: Gartner Group

Components are the fastest growing segment in the application development market (85% CAGR). Source: IDC

A component is an
object which extends
a set of interfaces
and provides a set of
services.

Figure 3 - Component Architecture

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 9

3 Selecting Standard Component Architectural Patterns

Viable software systems are developed according to some overall structuring principle. These
principles are described using an architectural pattern. An architectural pattern establishes a
fundamental structural organization on which to base a software implementation. It provides
a framework in which a particular architectural problem can be solved. Architectural
patterns are templates for technical architectures. The selection of an architectural pattern
determines the strategy for developing a software system.

The following sections define the architectural patterns that will be used in the
implementation of the SFA technical architecture.

3.1. Distributed N-Tier Client Server Architecture

3.1.1. N-Tier Architecture
The classic definition of a 3-tier architecture is ‘the partitioning across the client (tier 1), the
application server (tier 2) and the database (tier 3). In the 3-tier model the application logic
lives in the middle tier and is separated from the user interface and the data.

The introduction of high speed networks, the Internet, mobile clients, and application servers
have blurred the line between strict client and server. In many cases clients, web servers and
application servers maintain their own local data store and switch roles between client and
server depending upon the situation. In this environment client-server is more of a
conceptual pattern that applies on a transaction by transaction basis at runtime, thus N-tier
(Figure 4).

Client

Student
Data

Firewall

Student
Address

Financial
Instituion

Loan Options

Loan Program

Student

School

Web Server

Application
Servers
(Logical)

Firewall

Application
Service
Servers
(Logical)

School
Address

Figure 4 - N-Tier Client Server Architecture

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 10

3.1.2. Client Server Architecture
Client Server Architecture defines a set of building block (components) that can be used to
develop a distributed system. These blocks are comprised of the Client, the Server and the
middleware – the glue responsible for holding the client and server together. These
components have the following characteristics:

• Client – The client uses the distributed services of the middleware to implement an
interface to the server in order to obtain desired information stored elsewhere. The client
is responsible for implementing presentation services that are appropriate to the end
resource. This is most often a graphical user interface (GUI) such as a web browser.

• Middleware – The middleware runs in both the client and server environments. It
provides essential common services used to implement network communication,
transactions and security to name a few.

• Server – The server provides a given set of services. It depends on an interface between
the native operating system (OS) and the middleware to process requests for a service.
The server provides the services for accessing data and business logic.

3.1.3. Distributed System
A distributed system provides applications with the ability to execute segments of their logic
on different hardware platforms using different operating systems in possibly different
physical locations. With the advent of powerful multiprocessor based mini-computers and
the establishment of high-bandwidth networks, distributed computing has become a viable
implementation strategy. Some benefits of a distributed computing environment are:

• Increased Reliability – redundant workload managed servers provide protection against
system crashes.

• Increased Scalability – workload is effectively scaled by adding additional servers.

• Increased Performance – by viewing the ‘network as a computer’, distributed
applications are capable of leveraging resources across the network.

3.2. ‘Model View Controller’ Architectural Pattern
The Model-View-Controller (MVC) architectural pattern divides an interactive application
into three basic components. The model provides the business logic and interface to data
stores. Views provide a client specific implementation of the data obtained from the model.
MVC architectural pattern maps exceptionally well to a distributed client-server system.
Moreover, each layer of the MVC maps well to a component based implementation. This
clear separation of the architectural components allows for independently designed and
developed modules that are bound at runtime. Figure 5 shows the architecture of an Internet
based thin client implementation of the MVC pattern. Note the MVC pattern is not limited to
a thin client implementation nor is its use restricted to end user clients. Furthermore, the
physical location of the MVC layers is not relevant.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 11

Web Client

Presentation

Java Server Pages
(JSP)

VIEW

User Request Logic

Servlets

CONTROLLER

Business Logic

Enterprise JavaBeans
(EJB)

MODEL

Select Loan

Process Loan
Request Student ___

EJB___
Object___

Loan___
EJB___

Object___

2

3

Invoke Select

Pick JSP & Respond

Call EJB Objects

1

Figure 5 - Model View Controller Pattern

3.2.1. Advantages of the Model-View-Controller Pattern
The advantages of using the MVC Pattern in the SFA architecture provides the following
benefits:

• Multiple views of the same business model – Since MVC provides for a strict separation
of the business model from its representation, multiple views across heterogeneous
delivery devices, can therefore be implemented and used with a single model.

q"Synchronized view – The change propagation mechanism of the MVC pattern
ensures that changes to the model are synchronized with all attached observers at the
correct time.

q"Pluggable views and controllers – The logical separation of the model, view and
controller will allow Department of Education to exchange the view and controller of
a model as the business requires.

q" Interchangeable views – The MVC will allow for the implementation of many views
of the same model with respect to such constraints as user access levels.

• Internet fit – An MVC pattern is an excellent fit in the Internet environment where there
is a distinct separation between the end user view and the business model. Figure 5
depicts the separation of the view from the model by using a web browser as the client
and EJBs to model the business components.

• Separation of responsibilities – Separate development teams can be assigned to
implement the different functional areas of the MVC.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 12

3.3. Fat Client vs. Thin Client – The Advantage of The Web Browser
Client

The term Fat Client/Thin Server defines a strategy for placing the bulk of the processing and
business logic within the client of a client server implementation. Likewise, Thin Client/Fat
Server defines a client server architecture in which the bulk of the processing and business
logic is provided by the server. Either implementation requires that the client be responsible
for the majority of the end user presentation interface.

Over the past several years the increasing functionality of web browsers has made thin client
development a technological reality. Providing content via the web has reduced the need to
develop and distribute expensive client applications. Even so, until recently developing
applications with complex formatting and processing via the web required the development
of an applet. Now complex formatting and business logic can be implemented by using a mix
of servlets, JavaServer Pages (JSP) and Java Beans. This alleviates the need to consider the
latency time and bandwidth required to download an applet for use in a browser.

3.3.1. Web Browser Client Advantages
The following is a list of advantages that a thin client holds over the use of a fat client.

• Thin clients provide a greater level of scalability because the fat server can be workload
balanced. The client platform is usually the limiting factor with respect to processing
power. Adding additional severs is easier than replacing client machines.

• Thin clients reduce the costs of development and deployment – there is little to deploy to
client machines other than the browser.

• Web based thin clients provide platform independent client access to applications.

• Thin clients do not require specific versions of browser based implementations with the
exception of the most recent Hypertext Markup Language (HTML) support.

• A true web based thin client does not require the same long latency periods for
downloading as do applet based fat clients.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 13

4 The ITA Conceptual Architecture

4.1. The SFA Architecture Domains
The ITA is based on three core architecture domains within the SFA technical environment,
which are targeted at reducing stovepipe systems, islands of technology and the need for
customized point-to-point system interfaces. The three new domains include the Internet
Domain, the Enterprise Application Integration Domain, and the Enterprise Data Domain.
These three domains combined with the current Legacy Domain, make up the SFA enterprise
and the ITA. The business rules, integrity checks and sequence of steps associated with a
business function are implemented in a logical black box referred to as a ‘service.’ Services
provide a set of published interfaces that allow participating applications to extend their
business processes.

Together the four domains of the ITA provide the necessary infrastructure to implement a
service-oriented architecture. However, in order to provide this infrastructure each domain
must provide support for seamless integration between domain touch-points. Each domain
must provide a set of interfaces or connectors that allow integration with the services of
intersecting domains. For example, the Internet Domain must provide interfaces to the Data
Domain in order to provide persistence for stateful business objects. The Data Domain must
provide adapters to disparate data sources in order to feed the extract/transform/load
process. The Enterprise Architecture Integration (EAI) Domain must provide connectivity to
different legacy architectures and data sources in order to provide integration with existing
SFA systems.

Figure 6 shows how the four domains overlap to provide seamless integration between
domain services. The EAI layer is the glue for providing the integration between the domains
where interfaces do not exist. The EAI layer provides a set of application adapters and
communication services that can span domains thereby providing additional integration
points between domains.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 14

Legacy Domain

•Existing Applications
•Stove Pipe Platforms
•Islands of Technology
•Legacy Data

Internet Domain

Data Domain

Enterprise Application Integration Domain

•Internet, Intranet, Extranet
•Network Infrastructure
•Application Servers
•Business Components

•Communication Services
•Asynchronous Messaging
•Connectors and Adapters

•Data Warehouses
•Data Marts
•Operational Data Stores
•Data Services

Figure 6 – The Four Domains of the SFA Architecture

The successful implementation of the ITA domains will provide the infrastructure for
integrating COTS packages with other SFA systems. Using the integration interfaces
supplied by the domains will make it possible to avoid the creation of system silos that are
not part of the overall business solution. The ITA provides support for the integration of new
COTS packages into either the Internet, EAI or Enterprise Data Domain. The ITA supports
the integration of COTS packages that support the following domain interfaces or
frameworks:

• Enterprise Java Beans (J2EE)

• CORBA Business Objects

• Work Flow Management

• Asynchronous Messaging (AMI, CMI, JMS, etc)

• Data Warehouse Analysis (ROLAP, MOPLAP, etc)

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 15

Legacy Domain

•Existing Applications
•Stove Pipe Platforms
•Islands of Technology
•Legacy Data

Internet Domain

Data Domain

Enterprise Application Integration Domain

•Internet, Intranet, Extranet
•Network Infrastructure
•Application Servers
•Business Components

•Communication Services
•Asynchronous Messaging
•Connectors and Adapters

•Data Warehouses
•Data Marts
•Operational Data Stores
•Data Services

Future COTS
Integration
Points

Figure 7 – Future SFA COTS Integration Points

4.2. Product to Domain Mapping
The Department of Education’s SFA Modernization Task Order 4 (TO4) defined the
requirements for implementing a Service-Oriented Architecture. TO4 also selected the
vendors and products that provide the functionality required for implementing the necessary
functionality with each domain of the ITA. Table 2 provides a map for each selected product
to the target domain according to function.

Table 1 – Integrated Technical Architecture Product to Domain Map

Product Type Product Name Function Domain Domain
Interfaces

Web Server IBM HTTP Server

- Thin Client
Presentation

- Render HTML

Internet Enterprise Data

Web Application Server IBM WebSphere
Advanced Edition

- Servlets

- JSPs

- Web Security

Internet
Enterprise Data,

EAI

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 16

Product Type Product Name Function Domain Domain
Interfaces

Business Object Server
IBM WebSphere
Enterprise Edition
Component Broker

- EJBs

- CORBA

- Adapters

Internet/EAI

EAI,

Legacy,

Enterprise Data

Portal Server Viador Portal Server
- Portal

Internet

Search Engine Autonomy Search
Engine

- Web Spidering

- Content Searching
Internet Enterprise Data

Content Management Interwoven TeamSite

- Content
Management

- Configuration
Management

Internet

Internet Load Balancing IBM WebSphere
Performance Pack

- HTTP Spraying

- IP Redirection

- Load Balancing

- Caching

Internet

Directory Server Netscape LDAP Server
- Directory Services

- Privilege Security
Internet/EAI EAI

Message Oriented
Middleware

MQSeries, MQSeries
WorkFlow

- Asynchronous
assured message
delivery

- Application
Adapters

- Business Process
Management

EAI

Internet,

Enterprise Data,

Legacy

Message Broker MQSeries Integrator
- Message
Transformation and
Routing

EAI
Enterprise Data,

Legacy

Data Warehouse
Management Informatica

- Data Extraction

- Data
Transformation

- Data Loading

Enterprise Data Legacy

Data Warehouse
Analysis Microstrategy

- OLAP

- ROLAP

- MOLAP

Enterprise Data Internet

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 17

4.3. SFA Domain Architecture Topologies
This section describes the topology of each ITA Domain. The execution topologies required
to support the ITA Domains will be shown in graphical form in the following sections. Each
topology diagram will consist of several nodes that represent the function of that node. The
execution topology of each SFA Domain Architecture will be described and mapped to a set
of vendor products.

4.3.1. The End-to-End Architecture Topology
The following diagram provides a high-level view of the SFA Service-Oriented Architecture.
The diagram depicts the run-time topology necessary to support all of the architectural
domains. Some minor elements of each domain may be excluded to allow for diagrammatic
elegance.

Web Server
Group

Enterprise
Data

 Load
Director

Content
Manager

Internet
Client

LDAP

Servlet Engine
Cluster

Pr
ot

oc
ol

Fi

re
w

al
l

D
om

ai
n

 F
ire

w
al

l

servlet

Demilitarized
Zone (DMZ)

Outside
World Internal Network

Date Warehouse,
Data Marts

Application
Server
Group

ODS

Legacy
Applications

Message
Broker

Message
 Oriented

Middleware

ETL
Server

ETL

Legacy
Data

•Portal Server
•Search Engine
•XML Server
•Business
Components

Lo
ad

 B
al

an
ce

r

Analytical
Reporting
Engine

Figure 8 – End-to-End ITA Topology

4.3.2. Internet Architecture Topology
The Internet Architecture (Figure 9) supports the delivery of web-based applications to SFA’s
users on the World Wide Web (WWW). Specifically, the execution topology in Figure 9
provides the infrastructure necessary to support the delivery of web based thin-client

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 18

applications. The topology defined in this section defines a highly scalable and available
feature rich enterprise internet architecture. The implementation of this architecture within
SFA will be deployed in stages according to application or system requirements. For
example, the implementation of LDAP and security servers will be deployed in the later
stages of the implementation of the technical architecture.

Web Server

Web Server

Database

 Dispatcher

 Proxy

 Intranet
 Proxy

 Dispatcher

Content
Manager

VPN
Client

Internet
Client

Servlet Engine

Servlet Engine

Portal
Server

Portal
Server

Search
Engine

Search
Engine

Intranet
Client

Pr
ot

oc
ol

Fi

re
w

al
l

D
om

ai
n

 F
ire

w
al

l

servlet

servlet

Demilitarized
Zone (DMZ)

Outside
World Internal Network

Shared File System – AFS, NFS, DFS

Security
Server

* *
LDAP

Web
Spider

Figure 9 – Internet Architecture Topology

Note: Elements that are prefaced by a * will be implemented in the later stages of SFA
technical architecture.

The Internet Architecture includes the following components or nodes:

• Protocol and domain firewall nodes – Firewalls provide services that can be used to
control access from a less trusted network to a more trusted network. A protocol firewall
provides screening routers according to protocol type. Domain firewalls provide
application gateways to applications located within the enterprise.

• Load balancing and caching node – The load balancer provides horizontal scalability to
the web servers by dispatching Hypertext Transfer Protocol (HTTP) requests among
several identically configured web servers. This node may also provide caching for
frequently accessed web pages.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 19

• Shared file system node – The synchronization of content and file system access
authority is achieved by using a shared file system thereby capitalizing on the replication
capability of this technology.

• Web Server Node – The web server node is an application server that includes an HTTP
server and is typically designed for access by HTTP clients and to host presentation logic.
The web server also provides services for serving other protocols like FTP, sound and
streaming video.

• Web Application Server Node – This node provides the infrastructure for component
based application logic. The web application server(s) provide the underlying services for
running servlets, JSPs, EJBs and CORBA objects.

• Search Engine Node – Provides services for searching data and returning uniform
resource locator (URL) links to data that matches the provided search criteria.

• Content Management Node – This node manages the static content that is accessible
through HTTP links. The content must be managed according to conventional
configuration management techniques.

• *Directory and Security Services Node – These nodes supply information on the
location, capabilities, access privileges and various attributes related to resources and
users known to the enterprise. This node supplies security services for authentication and
authorization to enterprise resources according to users privileges.

• Portal Server Node – The portal server node provides the services to dynamically define
a standardized enterprise look and feel to web applications. The portal server also
provides the user with the ability to personalize web applications according to their
preferences.

Further decomposition and explanation of the Internet architecture may be found within the
Scenarios sections as well as in the section that defines the Internet Architecture Detailed
Design.

The following topology diagram depicts the Internet Domain Architecture product mapping
designed to support the content searching through the SFA portal.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 20

Web Server
Group

Database

Load
Director

Content
Manager

Internet
Client

LDAP

Servlet Engine
Cluster Portal

Server Search
Engine

Pr
ot

oc
ol

Fi

re
w

al
l

D
om

ai
n

 F
ire

w
al

l

servlet

Demilitarized
Zone (DMZ)

Outside
World

Internal Network

Shared File System – IBM AFS

Enterprise Data

MetadataExternal
Content

Metadata

Internal
Content

IBM WebSphere AE

Netscape LDAP
Interwoven

TeamSite

Viador

Autonomy

WebSphere
Perf Pack
Dispatcher

Oracle

Lo
ad

 B
al

an
ce

r

Figure 10 – ITA Internet Domain Architecture Product Mapping

4.3.3. The EAI Architecture Domain Topology
The Enterprise Application Integration (EAI) Domain Topology provides the services
necessary to support application integration across the SFA Enterprise. The topology
supports the implementation of an asynchronous messaging back-plane that forms the basis
for the deployment of a hub and spoke network architecture. The topology also supports
application connectivity and transaction processing through the integration of pre-built
application adapters, gateways and connector frameworks.

The Enterprise Application Integration Domain Topology includes the following
components or nodes:

• Queue Managers – Queue Managers are run-time processes that are responsible for
managing queues of messages for application programs using International Business
Machine’s (IBM) MQSeries. Queue Managers help maintain the flow of messages
through a queue and manage communication links between other queues.

• Message Broker -The role of the Message Broker is to provide a layer of logic to the
messaging layer. The Message Broker is the ‘glue’ between intercommunicating
applications. The Message Broker ensures that messages are routed correctly between
applications and in a format in which the applications can understand each other. SFA
applications will use the Message Broker MQSeries Integrator (MQSI) to provide a
mechanism for:

q" intercommunication between applications that are served by the application server

q" asynchronously obtaining data from legacy applications

q" asynchronously updating legacy applications

q" routing data to and from Enterprise Data Warehouses and Data Marts.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 21

• WorkFlow Server – The WorkFlow node uses the messaging infrastructure for
communication. The role of a WorkFlow Server is to automate business processes
involving people and applications to give the enterprise added control over business
activities. In the case of SFA it allows the developer to establish rules for managing
updates to applications across the enterprise.

• Application Adapters - Application Adapters provide direct connectivity to applications
and disparate data sources. Application Adapters allow application to transactionally
coordinate updates across different data sources. Application Adapters are used by
Application Servers such as Component Broker (CB) to provide support for On-Line
Transaction Processing (OLTP).

The following topology diagram depicts a possible execution topology and product mapping
for the SFA EAI Architecture Domain.

Database

D
om

ai
n

Fi
re

w
al

l

Demilitari
zed

Zone
(DMZ)

Outside
World

Internal Network

Shared File System – AFS, NFS, DFS
Enterprise Data

MQSeries
Client

OS/390

LPAR A

Enterprise
Data

Rules

Internet Domain Architecture

RDB

ETL
Server

Message
Broker

Message
Broker

MQSeries
•Queue Manager
•Transmission Queue
•Remote Queue
•Local Queue

MQSeries
Integrator

MQSeries
Workflow

MQSeries
Messaging
Network

RDBMQ
Client

OS/390

LPAR A
RDB

IBM eBiz
Connectors

Figure 11 - ITA EAI Domain Architecture Product Mapping

4.3.4. The Enterprise Data Domain Topology
The data layer consists of two segments in the Department of Education SFA technical
architecture, the legacy data domain and the Enterprise Data Domain.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 22

Legacy Data Domain

The Legacy Data Domain (LDD) is based on existing data stores used by the current legacy
infrastructure. Legacy applications and the LDD comprise the Legacy Domain. The majority
of information stored in the legacy data domain is backed by DB2 on the OS/390. Direct
access and acquisition of data stored in DB2 is not possible because the database schemas are
not normalized and highly coupled to their respective applications. Data stored in the legacy
data domain must be considered a secondary data repository once its controlling application
is deprecated or duplicated.

Enterprise Data Domain

The Enterprise Data Domain (EDD) is the data repository that will be supported by future
enterprise applications. The Enterprise Data Domain is comprised of data warehouses, data
marts and operational data stores. The EDD is accessed and updated by applications that live
in either the Internet or EAI Domain. The data stored in the EDD will be considered to be the
‘official’ copy of Department of Education’s corporate data. The EDD provides Department
of Education with a more normalized data schema that lends itself to the use of business
components and object relational mapping. The EDD will be updated in real-time while the
LDD will have some period of update latency. This will be true only when a new
infrastructure application is responsible for controlling updates to the same logical schema in
the EDD.

The SFA Enterprise Data Domain Topology includes the following components or nodes:

• ETL Node – The Extract Transform Load (ETL) node provides the services necessary to
perform the Extract, Transform, Load and Distribute processes used to create the Data
Warehouse, Data Marts and Operational Data Stores.

• OLAP Node – The On-Line Analytical Processing (OLAP) nodes role is to provide a real
time reporting engine capable of analyzing the large data sets usually associated with a
data warehouse.

• Database Node – The database node provides support for implementing a centralized
database that collects, organizes and stores data from SFA’s operational systems to
provide a single source of integrated and historical data for the purposes of the end-user
reporting, analysis and use in decision support and Customer Relationship Management
(CRM) systems like Seibel.

The following diagram depicts a possible execution topology and product mapping for the
SFA Enterprise Data Domain Topology.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 23

Legacy
Data

Data
Warehouse

Message
Broker

Data
Mart

OLAP
Server

ODS

Meta Data

ETL
Server

MicroStrategy
InfoCenter

Informatica
PowerCenter

Server

Oracle 8i
RDBMS

Figure 12 - ITA Enterprise Data Domain Architecture Product Mapping

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 24

5 Technical Architecture Scenarios

This section defines the scenarios that will occur with in Department of Education’s technical
architecture. Each scenario is a section of the proposed technical architecture that as been
partitioned into interrelated slices. These sections lend themselves to further technical
decomposition and are focused on a particular architectural theme. The defined scenarios
may overlap or work in conjunction with another scenario.

5.1. Overview of Technical Architecture Scenarios
The following table describes each of the architectural scenarios, the layers that are involved
and assigns a number to the scenario for reference purposes.

Table 2 - Technical Architecture Scenarios

Sc
en

ar
io

 #

Description

Pr
es

en
ta

tio
n

La
ye

r

In
te

rn
et

D

om
ai

n

EA
I D

om
ai

n

En
te

rp
ri

se
 D

at
a

D
om

ai
n

Le
ga

cy
 D

om
ai

n

C
lie

nt
 T

yp
e

1 Thin Client Accessing Business Application
Components (No Legacy) X X X Thin

Browser

2 Batch Process Accessing Business
Application Components X X X X Batch

3 Business Application Components
Coordinating Legacy Updates X X X X

4 Legacy Applications Coordinating Business
Application Components X X X

5 Searching Content Using the Internet Portal X X X X Thin

6 Data Population Using an ETL Process X X Batch

7
Coordinating Transaction Processing

X X X X X Any

8 Accessing Applications Through The DMZ X Thin

5.1.1. Scenario #1: Browser Based Thin Client Accessing Business Application
Components

Purpose

This scenario defines an Internet based thin client architecture. The goal of this architecture is
to provide the end user with an interactive GUI that accesses business application

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 25

components. The GUI is implemented using a Java enabled web browser like Netscape
Communicator.

Architectural Pattern(s)

Scenario #1 is based the following architectural patterns:

• Model View Controller

• CORBA Services

• Enterprise Java Beans

• Web Servlets

• JavaServer Pages (JSP)

Development Languages

The following table defines the languages and the purpose for using them with in this
scenario.

Table 3 - Scenario #1 Programming Languages and APIs

Programming Languages and APIs Purpose(s)

Hypertext Markup Language – HTML

Develop the presentation of the web page.

Define the location of the web server.

Provide context for executing servlets on the web server.

Java

Develop business components

Develop servlets

Develop JSPs

C++ Develop CORBA business components invoked by other
business objects such as CORBA JavaBOs and EJBs.

Scenario Protocols

The following table lists the different protocols used to implement scenario #1.

Table 4 - Scenario #1 Protocols

Protocols Purpose(s)

HTTPS – Secure Hyper-Text Transport Protocol

Used to send secure information to and from the web client
and web server.

Provide encryption of HTML to and from browser and web
server.

HTTP – Hyper-Text Transport Protocol Used to send information to and from the web client and web
server.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 26

Protocols Purpose(s)

IIOP – Internet Inter-Orb Protocol Provide network communication for CORBA and EJB objects.

TCP/IP – Transmission Control Protocol / Internet Protocol Network transport protocol used from client to web server

Related Architectural Scenarios

This scenario is closely related to the Demilitarized Zone (DMZ) architectural scenario. The
DMZ scenario outlines an architectural pattern used to define secure Internet access to
enterprise resources. This scenario assumes direct access from the Internet client to the web
page. The flow of this scenario is applicable to that of an Intranet application.

Scenario Assumptions

The following is a list of assumptions, which help to define the state of the system before the
scenario begins:

• An application that uses HTML is served by a web server. This server is capable of
executing servlets and Java Server Pages. Support for this requirement is provided by the
WebSphere Advanced Edition (AE) servlet engine.

• Access to the web server via the firewall is not considered part of the scope of this
scenario. See the discussion on the DMZ pattern.

Operational Flow of Scenario #1

This section defines the basic processing flow required to provide thin client access to
business application components (Figure 13).

Web Client

CONTROLLER

Servlets

Result
Bean

MODEL

Business
Object Server

BO

Business Application
Components

Basic Business
Components

Application Adapters / G
atew

ays,
M

essaging Layer

VIEW

JSP

Client
Framework

11

1

2
3

4

59
6

7

810

Figure 13 - Scenario #1 (Thin Client Accessing Business Application Components)

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 27

1. The user selects a link on the web page that instructs the web application server to
execute a servlet. The servlet defined in web page has been registered with the web
server. This servlet is part of the client framework and knows how to present information
defined by the user to a controller servlet. For example, the servlet may be invoked as a
result of a <form method=get action=”servlet name”> HTML tag. However, there are
numerous ways to invoke servlets. The initiating servlet may pass control to another
servlet registered in the application server. This is called servlet chaining and is useful
when the output of one servlet is used as input for another. One use of this technique
may be to limit the number of queried items returned to the browser. The client web
browser communicates to the web server using HTTP or Secure Hyper-Text Transport
Protocol (HTTPS) depending on the security requirements. Secure HTTPS should be
used when users exist outside the trusted network and are accessing sensitive data.

2. The servlet that coordinates the processing of business components is called the controller.
This servlet lives in the application server and is responsible for presenting the request to
business components and processing the results.

3. The controller servlet finds the business component server and sets up communication
between the servlet and the server in order to begin processing the request. In the case of
EJBs the controller uses the Java Naming and Directory Interface (JNDI) API to access the
location of the server that provides the necessary services. This is done by the servlet
which provides the namespace location and context factory class that are placed into the
bean properties. A network connection to the root of the namespace is then established
by invoking the InitialContext(props) method. The namespace provides the location of
the Home interface that will be used to find instances of business components. Several
options exist for determining the location of the naming server or location of a particular
object within the naming and directory service. Options include, storing the information
in LDAP, properties files or metadata tables in a database.

4. After obtaining a reference to the necessary business application component the
controller invokes a message to the component that will process the desired request.
Messages to EJB application components are invoked using the Remote Method
Invocation (RMI) API. However, the underlying network implementation may be
different for each EJB vendor. For example, IBM’s Component Broker uses RMI/Internet
Inter-ORB Protocol (IIOP) as the underlying transport protocol.

5. The business application component obtains references to a set of basic business
components necessary to process the request from the application component. This
entails querying the application server using Object-Oriented (OO) Structured Query
Language (SQL) to obtain either a collection of object references or a set of database
tuples. Object references are useful when additional processing by the business object is
necessary to complete the request. Returning a set of database tuples is useful when
presenting query sets to a requester. The business application component is responsible
for defining and coordinating the transactional context. Business application components
can be either CORBA or EJB based – it does not matter.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 28

6. Basic business components utilize an application adapter to Oracle (distributed) or DB2
(mainframe) to issue request to the database to obtain specific tuples in the database,
which correspond to the object relational mapping of the basic business component.

7. Data that matches the queries issued by the basic business components is returned to the
application adapter and is used to populate instances of the corresponding business
component.

8. The application business component processes the basic business components according
to their business logic.

9. The application business component returns the results of the request back to the
controlling servlet via a result bean. A result bean defines the structure of the data to be
passed back to the servlet according to the request.

10. The controlling servlet uses a predefined JSP that lives in the application server to re-
present pre-formatted results to the web browser. The JSP defines a template for how the
HTML page will be displayed.

11. The JSP creates a dynamic web page from the results and sends the response back to the
client via the web server. The dynamic web page is created according to the presentation
template defined as part of the JSP.

12. The web server processes the doPost() issued to the client and sends the web page
created by the JSP back to the web browser.

Benefits of Scenario #1

The greatest benefit of scenario #1 is that it provides a very thin client with access to
enterprise resources. This reduces the need to consider client configuration during
application development or deployment. Additional benefits are:

• Greatly improved portability. Because servlets are written in Java, they are portable
across platforms, so that they do not have to be recompiled for different operating
systems. The servlet interface, being a standard, allows servlets to be moved from one
servlet engine to another, as long as the servlets do not use vendor extensions.

• Separation of business logic from presentation logic. This allows for greater reuse of
business logic across different clients.

• Makes implementation of the DMZ architectural pattern easier. Separation of the web
and application servers restricts the flow of IIOP and other enterprise specific network
protocols (such as SNA) to with in the trusted network.

• No direct access to business components thereby adding a degree of security.

• Promotes load balancing of the physical layers – web server, application server and the
database server. Each physical layer can be work load balanced independently providing
for a highly scaleable and robust computing environment.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 29

Liabilities of Scenario #1

The liabilities of implementing applications that utilize scenario #1 are as follows:

• The development of a web based MVC may be more complex than a traditional
centralized 2-tier client server application. Determining the right granularity between the
controller and the model reduces the implementation complexity.

• The implementation of the client, the servlet, and the business components are likely to
be developed by different staff members or teams. A thoroughly documented analysis
and design is required before development begins to avoid unnecessary defects.

• Changes to the business model components may require changes to the controller servlet
as well as the JSP which re-presents data.

• Servlets are web centric controllers and as such can not be used in other MVC
implementations. The duplication of functionality within the system that mirrors a web
based MVC implementation using another paradigm (fat client) will require the re-
development of the controller functionality in the new paradigm.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 30

5.1.2. Scenario #2: Batch Applications Accessing Business Application Components

Purpose

This scenario describes the basic flow of an application that uses a fat client to manipulate
business components to implement a business process. Fat clients may include applications
with or with out end user interfaces. Batch applications are fat clients with very thin user
interfaces. Applications that use applets or other client frameworks to provide an end-user
with a GUI interface are fat clients with a thick user interface.

Architectural Pattern(s)

Scenario #2 is based the following architectural patterns:

• Model View Controller

• CORBA Services

• Enterprise Java Beans

• Java Applets/GUI Frameworks

Development Languages and Application Programming Interfaces

The following table defines the languages and the purpose for using them within this
scenario.

Table 5 - Scenario #2 Programming Languages and APIs

Programming Languages and APIs Purpose(s)

Java

Develop business components

Develop Controller access to business components.

Develop GUI interface using static or web based applets.

C++

Develop CORBA business components invoked by other
business objects such as CORBA JavaBOs and EJBs.

Provide fat GUI clients.

Applet API Used to develop fat client GUI interfaces with Java.

Visual Basic Quick development of MS-Windows/NT based fat client
applications.

Scenario Protocols

The following table lists the different protocols used to implement scenario #2.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 31

Table 6 - Scenario #2 Protocols

Protocols Purpose(s)

IIOP – Internet Inter-Orb Protocol Provide network communication for CORBA and EJB objects.

TCP/IP – Transmission Control Protocol / Internet Protocol Network transport protocol used from client to web server.

Related Architectural Scenarios

The business component infrastructure and client proxy framework mentioned in scenario
#1 can be reused in scenario #2. The primary difference between the two scenarios is the
implementation of the GUI and controller frameworks.

Scenario Assumptions

The following assumptions help frame the initial state of the application before the scenario
begins:

• By definition the view and controller objects must be residents of the same application
when implemented as part of a batch client.

• A batch client may reuse any or all of the business components used by a thin client.

• The scenario is based on an application with a Java applet graphical user interface.
However, the same sequence of events would apply to other fat client implementations.

• The business components used in this scenario are implemented using CORBA objects.
However, the overall flow of the scenario would be similar using Enterprise Java Beans.

Operational Flow of Scenario #2

This section defines the basic processing flow required to provide fat client access to business
application component (Figure 14).

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 32

BATCH CLIENT

Application Adapters / G
atew

ays,
M

essaging Layer

VIEW

Web Client

Client Proxy
Framework

CONTROLLER

Result
Bean

Application
Object

MODEL

Business
Object Server

BO

Business Application
Components

Basic Business
Components

7

6

4

9

3

2

1

10

5

8

Figure 14 - Scenario #2 Batch Client Accessing Business Application Components

1. The user selects an option in the GUI interface that requires the services provided by a
business application component in order to process the request. Once the GUI processing
has been completed the view object passes the request to a controller for processing. The
controller object resides in the same application as the view object. Both of these objects use
the Java Bean component model to separate functional responsibilities. A controller that
manipulates business components is called an application object.

2. The controller establishes communication with the business object server by initializing a
connection to the Object Request Broker (ORB) and narrowing to the business object
server that contains the necessary business component. This process is specific to the
vendor implementation.

3. The controller obtains a reference to the correct business application component by
navigating the name space via the CosNaming service and narrowing the reference to an
interface. The applet (user interface) communicates with business components using the
IIOP. Department of Education specific client proxies will provide clients with the ability
to establish communication with business object servers without the overhead of having
to repeatedly develop the same infrastructure code for every client. These proxies will be
responsible for establishing and maintaining communication between the client and
business object servers.

4. The business application component obtains references to a set of basic business
components necessary to process the request from the application component. This
entails querying the application server, using OOSQL, to obtain either a collection of
object references or a set of database tuples. Object references are useful when additional
processing by the business object is necessary to complete the request. Returning a set of
database tuples is useful when presenting query sets to a requester. The business
application component is responsible for defining and coordinating the transactional

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 33

context. Business application components can be either CORBA or EJB based – it does not
matter.

5. Basic business components utilize an application adapter to DB2 to issue a request to the
database to obtain specific tuples in the database, which correspond to the object
relational mapping of the basic business component.

6. Data that matches the queries issued by the basic business components is returned to the
application adapter and is used to populate the corresponding business component.

7. Basic business components manipulate the data returned from the adapter according to
their business logic. Once processing is complete the information is presented to the
business application component.

8. The business application component returns the results of the request back to the
controller object in the applet via a result bean.

9. A result bean defines the structure of the data to be passed back to the client framework
according to the request. A result bean defines the structure for passing the requested
data back to the client.

10. The result bean is passed back to the applet and its contents are displayed to the user
according to the logic in the view object.

Benefits of Scenario #2

The primary benefit of using a Batch client (in an n-tier model) is a reduction in processing
pressure on the application server. Additional benefits are:

• Possible increase in application response time as compared to thin client.

• Allows for use of platform specific implementation techniques. For example, use of MS-
Visual Basic programming for Windows-NT.

• Promotes the reuse of those architectural elements defined by Scenario #1.

Liabilities of Scenario #2

The liabilities of implementing applications that utilize scenario #2 are as follows:

• Fat client specific business logic may not be portable to other client platforms. Fat client
business logic reuse has been traditionally low.

• Fat client performance requirements may out strip the client platform processor
capability.

• Data sets returned from the 2nd tier to the client could become large and cause network
bottlenecks.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 34

5.1.3. Scenario #3: Business Application Components Coordinating Legacy Updates

Purpose

This scenario describes the process of coordinating legacy applications from business
application components – Enterprise Java Beans or CORBA Business Objects. This scenario
comes into play when business components have been developed to support the
implementation of the EDD. Once an application that depends upon an EDD schema has
been implemented, and mirrors functionality provided by a legacy application, the data
stored in the EDD must be considered the ‘primary repository.’ For example, if a new
member service is implemented that uses the EDD, updates to the member data (EDD and
LDD) will be coordinated from the Business Component Layer.

Architectural Pattern(s)

Scenario #3 is based the following architectural patterns:

• CORBA Services

• Enterprise Java Beans

• Java Applets

• Forward-Receiver (Provided by MQSeries)

Development Languages and Application Programming Interfaces

The following table defines the languages, APIs, and the purpose for using them within this
scenario.

Table 7 - Scenario #3 Programming Languages and API’s

Programming Language and APIs Purpose(s)

Java

Develop business components.

Develop interfaces to and from the business components to
the MQ interface.

COBOL/CICS Develop legacy application CICS interface to be used for
implementing the external legacy gateway.

CORBA Event API Leverage the CORBA event service to coordinate updates
from business components to the MQ legacy interface.

MQI, JMS, AMI

MQ Application Programming Interface – used to
implement the MQ server to route updates to the legacy
domain.

Java and OAG messaging standards.

XML Provide a common message format for data exchange and
flexible message communication.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 35

Scenario Protocols

The following table lists the different protocols used to implement scenario #3.

Table 8 - Scenario #3 Protocols

Protocol Purpose(s)

IIOP – Internet Inter-Orb Protocol Provide network communication for CORBA and EJB objects.

TCP/IP – Transmission Control Protocol / Internet Protocol Network transport protocol used from client to web server

Related Architectural Scenarios

The business component infrastructure and client proxy framework mentioned in scenario
#1 can be reused in scenario #3. The primary difference between the two scenarios is the
implementation of the GUI and controller frameworks.

Scenario Assumptions

The following assumptions help frame the initial state of the application before the scenario
begins:

• The schema defined by the ODS is fronted by basic business components that provide an
object relational mapping of each table. Updates to the ODS are coordinated exclusively
through the basic business components.

• Basic business components are defined as EJB Entity Beans or CORBA Business Objects
served by the WebSphere Enterprise Edition application server Component Broker.

• This scenario is only focused on the flow of data between the Business Component Layer
and the Legacy Data Domain.

Operational Flow of Scenario #3

This section defines the basic processing flow required to provide updates initiated in the
Business Component Layer to legacy applications and the Legacy Data Domain (Figure 15).

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 36

LEGACY APPLICATIONSComponent
Broker Server

BO

7

6

Student
Loans

CICS

Operation Data Stores

Student
Loans DB

CICS MQ

MQ Series

MQSI
Request

Loan

1

EJB

2

3 4

5

Figure 15 - Business Application Components Coordinating Legacy Updates

1. A Business Application Component (EJB Session Bean) issues an update to a Basic
Business Component (EJB Entity Bean) that represents an atomic set of data stored in the
Operational Data Store. The application object may be implemented using either of the
component models, CORBA or EJB. The message is sent using IIOP (CORBA) or RMI
over IIOP in the case of EJBs. In the case of internet applications a servlet is used as the
controller to access the EJB or CORBA BO (CORBA Business Object).

2. The Basic Business Component provides an object relational mapping of the data it
represents in the corresponding DB2 or Oracle database. The connection to the database
is established using an application adapter defined by the container that is used by the
business object server to coordinate qualities of services, such as transactional integrity.
The Basic Business Components provide behavior that allows messages to be placed on a
queue, to inform the Legacy Domain that an update has occurred. For example, a new
student loan service has been implemented in using Department of Education’s Enterprise
Technical Architecture. Updates to the EDD student loan schema is coordinated directly
by the business object server.

3. The Basic Business Component places a message on the queue that will notify the
corresponding legacy application gateway that an update has occurred. In this case the
Customer Information Control System (CICS) MQ Gateway is used to update a CICS
CommArea with the data defined in the message. The EJB ensures that the message is
placed on the queue by using the 2PC interface to the queue. Once on the queue,
MQSeries guarantees that the message will be sent to the MQ server for routing to the
proper application gateway. In this case the message is routed to the Student Loan
gateway. The message destination is part of the information that the Basic Business
Object places on the queue. MQSI provides the services for transforming the message
data into the format required by the CICS legacy application. MQSI also routes the
message to the correct location (machine) where the legacy Student Loan resides.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 37

4. The MQSI pops the queue and reads the header information in order to determine where
next to route the message and how the message may be transformed. MQSI maintains a
set of rules that define how to format a message according to the target application. The
message is then placed on the corresponding legacy application gateway queue for
delivery. There may be several gateway interfaces available for MQSI to select that
correspond to the same application. Thereby providing a level of load balancing and
ensuring that the gateway is not a bottleneck.

5. Legacy gateways are implemented using a CICS MQ interface. The CICS application
gateway pops the next message off the queue and coordinates the update to the
corresponding application.

6. The target legacy application is responsible for making the proper updates to the Legacy
Data Domain. Because of the intertwined nature of Department of Education’s legacy
applications and databases, only the legacy applications can successfully update the
LDD.

7. The legacy application updates the corresponding databases with the information.

Benefits of Scenario #3

The primary benefit of implementing the architecture defined in scenario #3 is the ability to
separate business logic from data logic. By having the Basic Business Object or entity object
delegate the responsibility of updating the legacy applications, the legacy logic is effectively
segregated from the Business Component Layer. If the associated legacy application is
deprecated, the amount of impact on the Basic Business Component is minimal.

• Facilitates external reuse of enterprise components by platform specific implementation
techniques. For example, use of MS-Visual Basic programming for Windows-NT.

• Provides a scaleable messaging infrastructure that can be used between enterprise
services. For example, the Loan Service might communicate through MQSeries using
MQSI to route and update the Claim service.

• Provides guaranteed delivery of messages between services and gateways.

Liabilities of Scenario #3

The liabilities of implementing applications that utilize scenario #3 are as follows:

• Long latency times between services could cause the Legacy Data Domain to be out of
synchronization with the Enterprise Data Domain. Implementing load balancing and
server replication can eliminate long latency times between services.

• Business Application Component response times may outstrip legacy application
processing throughput resulting in application bottlenecks.

• Legacy application functionality must be thoroughly analyzed to properly implement
legacy application gateways.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 38

5.1.4. Scenario #4: Legacy Application Coordinating Business Application
Components

Purpose

This scenario describes the process of coordinating business component updates from legacy
applications. This scenario comes into play when business components have been developed
to support the implementation of the EDD. However, the legacy application(s) that supports
the corresponding LDD has not been deprecated because it still provides vital services to the
business. Before a legacy application is deprecated it may be necessary for updates to legacy
applications be propagated to the ODS (or other EDD databases). In this case updates to the
ODS flow through the messaging layer and are routed to the proper application server using
MQSeries Integrator.

In the near future legacy applications will maintain their external interfaces. This includes
user and system interfaces. Eventually, business application components will be developed
that mirror functionality provided by legacy applications. Over time legacy applications will
be deprecated and replaced by new applications that support Department of Education’s
SFA Enterprise Technical Architecture. Until this occurs, updates posted to the Legacy Data
Domain must be mirrored in the Enterprise Data Domain. Updates that must be propagated
to the ODS in near real time and outside the ETL procedure use the process described by this
scenario.

Architectural Pattern(s)

Scenario #4 is based the following architectural patterns:

• CORBA Services

• Enterprise Java Beans

• Java Applets

• Forward-Receiver (Provided by MQSeries)

Development Languages and Application Programming Interfaces

The following table defines the languages, APIs, and the purpose for using them within this
scenario.

Table 9 - Scenario #4 Programming Languages and API’s

Programming Language and APIs Purpose(s)

Java

Develop business components.

Develop interfaces to and from the business components to
the MQ interface.

COBOL/CICS Develop legacy application CICS interface to be used for
implementing the external legacy gateway.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 39

Programming Language and APIs Purpose(s)

CORBA Event API
Leverage the CORBA event service to
coordinate updates from business components
to the MQ legacy interface.

MQI
MQ Application Programming Interface – used
to implement the MQ server to route updates to
the legacy domain.

Scenario Protocols

The following table lists the different protocols used to implement scenario #4.

Table 10 - Scenario #4 Protocols

Protocol Purpose(s)

IIOP – Internet Inter-Orb Protocol
Provide network communication for CORBA and EJB objects.

Develop business components

TCP/IP – Transmission Control Protocol / Internet Protocol Network transport protocol used from client to web server

SNA Level 2 3270 Data Streams Used by legacy applications to communicate in the OS/390
legacy environment.

Related Architectural Scenarios

This scenario is closely related to Scenario #3 which defines the process for coordinating
updates to the legacy data domain that originate from a business component in the
application server. Scenario #4 is also closely related to Scenarios 5, 6, 7 and 8. Each of these
scenarios use MQSeries Integrator to route updates to services throughout the enterprise.

Scenario Assumptions

The following assumptions help frame the initial state of the application before the scenario
begins:

• The schema defined by the ODS (or other EDD databases) is fronted by basic business
components (entity beans) that provide an object relational mapping of each table.
Updates to the ODS are coordinated exclusively through the basic business components.

• This scenario is only focused on the flow of data between the LDD and the Business
Component Layer.

• The legacy application gateway provides bi-directional support for transactions. Updates
originating in the legacy domain can be passed to the gateway to update the Business
Component Layer. Updates originating in the Business Component Layer can be passed
to the legacy gateway for presentation to the corresponding legacy service.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 40

Operational Flow of Scenario #4

This section defines the basic processing flow required to provide updates initiated by a
legacy application to the Business Component Layer and the EDD (Figure 16).

LEGACY APPLICATIONS

Student
Loans

CICS

Enterprise Data Domain

Member
DB

CICS MQ

MQ Series

MQSI

1

2

3

45

Other
Applications

Legacy
Student

Aid
Request

Add
Member

WebSphere
Enterprise

Edition Component
Broker

EJB
6

7 5

Figure 16 – Legacy Applications Coordinating Business Application Components

1. An update to the LDD is initiated through an interface to a legacy application. The
update may originate from an end user or from an interface with another legacy service.

2. An interface to a legacy application initiates an update that results in a change to the
LDD. This is the normal process for updating data by a legacy application in Department
of Education’s current environment.

3. The legacy application populates the CommArea that supports the legacy application
gateway. This CommArea will be referred to as the Gateway CommArea (GCA). The
legacy application is responsible for properly formatting the message supported by the
GCA.

4. The legacy application then initiates the CICS application that supports the transfer of the
message from the CICS CommArea to the legacy gateway application that is responsible
for placing the message on the queue to be delivered to MQSI. The legacy gateway
interface formats and transfers the information stored in the GCA to the queue
responsible for routing messages to MQ Integrator. A legacy application may continue
processing requests once a message has been placed in the GCA and the Gateway
Transfer Program (GTP) has been successfully initiated.

5. The Application Interface Messaging (AIM) Server is notified of a message pending on
the queue. The AIM Server pops the message from the queue and examines the header to
determine the target destination. The message header informs the AIM Server that the
message is intended for the Business Component Layer.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 41

6. The Component Broker MQSeries Application Adapter (MQAA) is responsible for
listening for messages sent from MQSI to the application server. The MQAA is notified of
a message pending on the queue. The MQAA pops the message from the queue and
examines the header to determine the business component for which the message is
targeted. MQAA forks a new thread and sends the message to the business component
responsible for updating the ODS or other data mart defined by the header of the
message. An update to the ODS may require MQSI to formulate, transform and send
multiple messages in order to update several back end systems or other applications. The
MQAA provides a background process solely responsible for delegating messages sent
from MQSI (or any MQ application) to the corresponding business component (EJB,
CORBA BO).

7. The business component responsible for updates to the EDD defined by the message
makes the requested change to the database. The two data domains are now
synchronized. See Scenario #1 for more details on coordinating updates to the EDD using
business components.

Benefits of Scenario #4

The principal benefit of scenario #4 is to provide access to Department of Education’s legacy
applications while supporting the implementation of the Enterprise Data Domain. Scenario
#4 provides a process for supporting synchronized updates to both the Legacy Data Domain
and the Enterprise Data Domain. Additional benefits include:

• Facilitates the gradual deprecation of legacy applications.

• Provides for reuse of established legacy user interfaces during transition to new services
developed using the proposed technical architecture.

• Implementation of scenarios #3 and #4 will not require extensive modifications to legacy
applications.

• Facilitates external reuse of enterprise components by platform specific implementation
techniques. For example, use of MS-Visual Basic programming for Windows-NT.

• Provides a method of guaranteeing updates to the EDD initiated by legacy application.

Liabilities of Scenario #4

The liabilities of implementing applications that utilize scenario #4 are as follows:

• Directly updating legacy applications may circumvent business logic developed to
support business application components.

• Long latency times between services could cause the Legacy Data Domain to be out of
synchronization with the Enterprise Data Domain. Implementing load balancing and
server replication can eliminate long latency times between services.

• Initial implementation of scenario #4 may negatively impact legacy application
performance. A period of performance tuning may be necessary to properly integrate
changes to the legacy environment that stem from the implementation of scenarios #3

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 42

and #4. Deprecation of existing legacy services will reduce the amount of message traffic
flowing from legacy applications to the EDD.

• Legacy application functionality must be thoroughly analyzed to properly implement
legacy application gateways.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 43

5.1.5. Scenario #5: Using the Internet Portal to Search Content

Purpose

This scenario describes the process of finding information by searching for content using the
enterprise portal. Content may consist of information located within or external to the
enterprise. Information located within the enterprise may consist of data in data repositories,
intranet URLs or documentation located in the document management system. Information
located external to the enterprise consists solely of references to Internet URLs.

The Meta Group defines a portal as “A framework that enables differing levels of
functionality (e.g. content, applications) and interactivity (e.g. community) to members based
on preferences and business rules. Portals provide better “context” around work activities
and add value to existing sites through customized connections.” The Department of
Education’s SFA portal will provide the user community with a “gateway” to a set of services
focused on financial aid for students. One such service will be the ability to search for
information related to student financial aid. Users will access the portal via a well-known
URL (e.g. www.sfa.org) and select the search option to display the search screen. The search
screen will provide an input field in order to enter search criteria. Additionally, users will be
able to select search parameters to aid in searching. Document references that match the
desired search parameters will be categorized and displayed to the user on a search results
screen. Users can view each search document by selecting the reference link provided by the
search engine.

This scenario describes the technical architecture necessary to support searching through the
SFA portal.

Architectural Pattern(s)

Scenario #5 is based the following architectural patterns:

• Content Searching

• Data Mining

Development Languages and Application Programming Interfaces

The following table defines the languages, APIs, and the purpose for using them with in this
scenario.

Table 11 - Scenario #5 Programming Languages and API’s

Programming Language and APIs Purpose(s)

Java

Develop business components.

Develop interfaces to and from the business components to
the MQ interface.

Viador Portlet API Used to provide access to customized references outside of
the Viador environment.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 44

Programming Language and APIs Purpose(s)

Autonomy Search API Used to search the Autonomy indexed
repository.

Scenario Protocols

The following table lists the different protocols used to implement scenario #5.

Table 12 - Scenario #5 Protocols

Protocols Purpose(s)

IIOP – Internet Inter-Orb Protocol
Provide network communication for CORBA and EJB objects.

Develop business components

TCP/IP – Transmission Control Protocol / Internet Protocol Network transport protocol used from the desktop
application to the MQSI server.

RMI Used to communicate between the Viador Portlet servlet and
the VIC.

Related Architectural Scenarios

This scenario is related to the Data Propagation scenario. This scenario references data that is
obtained as a result of the ETL process and Data Propagation scenario. Search results that
reference internal enterprise data is maintained through propagation process.

Scenario Assumptions
The following assumptions help frame the initial state of the application before the scenario begins:

• The portal server and the search engine integration seamlessly.

• Searching is dependent upon the ETL and data propagation process and the availability
of information stored in enterprise data warehouses and data marts.

• Accesses to external web references are dependent upon connectivity and availability of
referenced sites.

Operational Flow of Scenario #5 – Searching Content using the SFA Portal

This section defines the process of using the enterprise portal to search for information. The
following diagram displays the basic topology for supporting the implementation of Scenario
#5. The portal server is supported by the Viador Information Center. Accesses to different
portal functions are implemented using Viador Portlets. The search engine is supported
through the use of Autonomy’s Dynamic Reason Engine, HTTP Fetch Spider and
AutoIndexer.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 45

Web Server
Group

Database

 Dispatcher

Content
Manager

Internet
Client

Web
Content

Servlet Engine
Cluster Portal

Server
(VIC)

Search
Engine

Pr
ot

oc
ol

Fi

re
w

al
l

D
om

ai
n

 F
ire

w
al

l

Servlet

Demilitarized
Zone (DMZ)

Outside
World Internal Network

Shared File System – AFS, NFS, DFS

Enterprise Data

MetadataExternal
Content

Metadata

Internal
Content

1 2

34

5 6
7

8

9

10

12

13
JSP

11

Figure 17 – Searching Content using the SFA Portal

1. A user accesses the SFA portal through their web browser via the Intranet or Internet.
Figure 17 shows the topology necessary to support Intranet access to the public SFA
portal. The user selects the search feature from one of the options within the portal.

2. The Web server is responsible for serving the web pages to the users web browser.
Searching is supported through the web server using a reference to a servlet that accesses
a Viador Portlet responsible for initiating the search. The integration between Viador and
Autonomy is achieved using the Viador Portlet builder API to initiate search requests
using the Autonomy search API.

3. Static web content is obtained from enterprise data sources and managed by the Content
Manager (Interwoven TeamSite). This includes static web pages that are part of web
applications and SFA documents.

4. Information served by the Web IBM HTTP Server (IHS) is stored in a web page
repository on the file system.

5. The Viador search Portlet is accessed using a servlet that is referenced in the portal web
page. The servlet/JSP engine provides support for execution of the servlet that access the
Viador Portlet that is processed by the Viador Information Center (VIC).

6. The VIC processes the search request and passes the search parameters to the Autonomy
search API.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 46

7. The Autonomy Dynamic Reasoning Engine (DRE) searches the content repositories for
information that matches the search criteria. This may references to Intranet and Internet
URLs or references to documents stored in the document management system.

8. Enterprise content may consist of indexed data held in a database or documents that
reside in the document management system.

9. References to Internet and Intranet information is obtained using the Autonomy HTTP
Fetch Spider. Once information is obtained using the spider it is indexed by the
Autonomy AutoIndexer to increase search speed.

10. References to search results are returned back from the Autonomy search engine to the
Viador Information Center. Viador formulates the presentation of the search results using
a JavaServer Page.

11. The JSP is compiled and the resulting HTML is returned to the IBM HTTP Server for
presentation to the web client. The JSP includes the HTML page produced by the
Autonomy search engine containing the requested search results.

12. The IBM HTTP Server posts the results of the search back to the User’s web browser

13. Matching results can be viewed by selecting the document reference. The User selects the
document reference in the result list for viewing. The referenced document is viewed
through the web browser using one of the available browser viewer plug-ins.

Web Server

Web Server

Database

 Dispatcher

 Proxy

 Intranet
 Proxy

 Dispatcher

Content
Manager

VPN
Client

Internet
Client

Servlet Engine

Servlet Engine

Portal
Server

Portal
Server

Search
Engine

Search
Engine

Intranet
Client

Pr
ot

oc
ol

Fi

re
w

al
l

D
om

ai
n

 F
ire

w
al

l

servlet

servlet

Demilitarized
Zone (DMZ)

Outside
World Internal Network

Shared File System – AFS, NFS, DFS

Security
Server

* *
LDAP

Fetch
Spider

Figure 18 – Intranet and Internet Execution Topology

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 47

Operational Flow of Scenario #5 – Analyzing SFA Data Warehouses Through the SFA
Portal

This section defines the process of using the enterprise portal to search and analyze data
stored within the SFA Data Warehouses and Data Marts. The operational flow defined here
follows the information shown in Figure 19.

1. A user accesses the SFA portal through their web browser via the Intranet or Internet.
Diagram Figure 17 shows the topology necessary to support Intranet access to the public
SFA portal. The user selects the option within the portal to search and analyze the SFA
Data Warehouse. Figure 19 depicts the operational flow required for searching and
reporting against SFA data stored in data warehouses. The Data Warehouse Portlet is
invoked through a servlet that is defined within the search web page.

2. The Viador search Portlet is accessed using a servlet that is referenced in the portal web
page. The VIC processes the search request and passes the search parameters to the
MicroStrategy search API.

3. The MicroStrategy Intelligence Server processes the search or reporting request according
to the parameters passed to the search engine via the Viador Portlet.

4. The data that matches the search or report request is formatted into an HTML page using
the result data that matches the search criteria.

5. Customized Portlets can be developed that combine search results from both data
warehouse reports and content search results obtained from the Autonomy search
engine.

6. SFA Data Warehouse reports and search results are referenced as URLs and presented to
the client as HTML through the WebSphere servers.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 48

Portal
Server

Servlet Engine
Cluster

ROLAP
MOLAP

Query Engine

Warehouse

Enterprise
Intranet
Content

Internet
Content

Web Infrastructure
•Browser Client
•Web Server
•Application Server IBM

WebSphere

Viador
Portal Server

Autonomy
Search Engine

Microstrategy
Query Engine

Search
Result
URL

1

2

3

4

5

6

Figure 19 – Analyzing Data Warehouses using the SFA Portal

Benefits of Scenario #5

• Provide the end user with a consistent look and feel through out the SFA web sites.

• Integration between the Viador Portal product and the Autonomy Search product will
provide SFA Users with a well integrated enterprise search tool.

Liabilities of Scenario #5

• Developers will need to implement custom Portlets to provide seamless integration
between Viador and Autonomy.

• Additional interfaces between Viador and the search engine may impact performance
and will require operational oversight and administration.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 49

5.1.6. Scenario #6: Data Population Using an ETL Process

Purpose

This scenario describes the process and operational flow of populating data warehouses, data
marts and operational data stored within the Enterprise Data Domain.

Data Population Strategy

Few, if any, data warehouse population processes are simple enough to be performed in a
single step. Therefore the basic ‘building block’ which works on the (read dataset – process –
write dataset) model is then applied to the problem in as many steps as the designer thinks is
appropriate for the problem being solved.

Source

Transform

Metadata

Source

Source

Source

M etadata

M etadata

Extract

Load

Read

Read

Read

Write

Write

Write
•Operational Data Store
•Data Marts
•Data Warehouses

Distribute

Figure 20 – The Extract, Transform and Load Process

Extract, Transform and Load Overview

A process known as Extract, Transform and Load (ETL) is used to populate data stores from
source data sets in the EDD. The ETL process is supported through the use of Informatica
PowerCenter. The SFA source data is the data that resides in the databases of all the legacy
applications, the LDD. Data that resides in the databases of the LDD is considered ‘dirty.’
Data is ‘dirty’ when information is duplicated, fragmented, not normalized and insufficiently

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 50

categorized. Data is considered ‘clean’ once it has been extracted from the legacy repositories
and transformed into data that adheres to a specific data model that is more useful to the
enterprise.

The ETL process (above) is used to populate three different types of repositories, Data Marts,
Data Warehouses and the ODS. Data Marts are repositories that support different segments
of the business that require diverse data models. Data Warehouses are large repositories used
as clearinghouses for data used as input for analytical processing. The ODS is a repository
used to support the data requirements necessary to support the daily operation of strategic
enterprise applications. The vast majority of the ODS is considered ‘read-only’ data that is
repopulated nightly from the LDD by the ETL process. However, this strategy may change as
new applications are introduced into the enterprise and older legacy applications are
deprecated. As a result the ODS may be considered the repository that reflects the enterprise
data model. Additional information can be found on this topic in the Data Population
Scenario.

Extract Process

The extract application extracts data from the source dataset, in the case of SFA, the LDD. The
dataset is owned by one of the existing legacy applications within SFA. More than one legacy
repository may be involved in the extraction process. Data is obtained from legacy
repositories using a set of extraction rules. Extraction rules define the specific data elements
that are copied from the source and the format of the data when written to the target
database.

Transformation Process

The transformation application converts source data from one form to another according to a
set of supplied rules. Transformation includes a variety of operations that can be performed
on the source data. This includes joins, validation, data cleansing, data replacement, deletion
or any other operation defined by the transformation rules. The source data for the
transformation process is the output from the extraction process. Transformation is often a
non-trivial process because generally there is no guarantee that all fields will be present when
required, and the transform process must be able to handle this condition.

Load Process

The Load process uses the output of the Transformation process to load the enterprise data
repositories. This includes enterprise data warehouses, data marts and operational data
stores. The load process may remove any existing data from target databases or simply
update data already present. For example, it is more efficient to replace data in operational
data stores and data warehouses. However, it is more efficient (and safer) to update tuples in
a data mart repository

Architectural Pattern(s)

Scenario #6 is based the following architectural patterns:

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 51

• Data Warehouse Management

• Extract, Transform, Load and Distribute Pattern

Development Languages and Application Programming Interfaces

The following table defines the languages, APIs, and the purpose for using them with in this
scenario.

Table 13 - Scenario #6 Programming Languages and API’s

Programming Language and APIs Purpose(s)

ODBC Database connectivity

Native Application Adapters Supported through Informatica to support database
connectivity

HTML
Support connectivity to administrative ETL interfaces

Provide support for implementation of OLAP reports.

XML Provide a common message format for data exchange and
flexible message communication.

Scenario Protocols

The following table lists the different protocols used to implement scenario #5.

Table 14 - Scenario #6 Protocols

Protocols Purpose(s)

TCP/IP – Transmission Control Protocol / Internet Protocol Network transport protocol used from the desktop
application to the MQSI server.

Related Architectural Scenarios

This scenario is related to the Data Propagation scenario. This scenario references data that is
obtained as a result of the ETL process and Data Propagation scenario. Search results that
reference internal enterprise data is maintained through propagation process.

Scenario Assumptions
The following assumptions help frame the initial state of the application before the scenario begins:

• Stateful business components (EJBs, CORBA BOs) that support OLTP utilize the ODS to
provide persistence to entity objects.

Operational Flow of Scenario #6

This section defines the basic steps necessary to propagate data contained in legacy databases
to Data Warehouses, Data Marts and ODS within the SFA Enterprise. The following steps
follows the operational flow depicted in Figure 21.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 52

ODS
Legacy

Applications

Enterprise Application Integration Services
Messaging, Brokers, Stateful Business Objects, Connectors

Data
MartETL

Warehouse

Enterprise
ROLAP
MOLAP

(Microstrategy)

On-Line
Transaction
Processing

Legacy
Data

ETL

1
2

3

4

5

6

Figure 21 – Data Propagation within SFA using an ETL Process

1. Data stored in the LDD is extracted according to data type and purpose, transformed
according to SFA schema models, and loaded into target Data Warehouses, Data Marts
or ODS. The process is accomplished using the Informatica PowerCenter ETL server.

2. Information that is extracted from Legacy Data repositories is placed into the SFA Data
Warehouse. The Data Warehouse schema supports the end-user access via ad-hoc
queries, analytical processing and Knowledge Discovery using intelligent mining tools.

3. A separate ETL process extracts data from multiple legacy data repositories to build the
ODS. The ODS schema is more normalized than the Data Warehouse in order to support
applications that implement stateful business objects that utilize the ODS for persistence.

4. Data may undergo additional ETL conversions to be distributed to Data Marts. The
schema of each Data Mart reflects the requirements of the corresponding user
community. Alternatively, a Data Mart ETL source may originate from ODS.

5. On-line Data Mining is supported through the use of the MicroStrategy Intelligence
Server and other reporting agents.

6. Data stored in Legacy applications are updated through the EAI Domain. When
necessary data contained in the ODS is updated directly by stateful business objects using
application adapters or connectors provided by the EAI.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 53

Benefits of Scenario #6

• Provides the processes and services that move and control movement of data, resulting in
the population of the enterprise data stores.

• Supports end-user access to data stored within the SFA Data Warehouses.

• Provides the mechanisms and architecture to access and display data in an
understandable and flexible manner.

• The implementation of ODS defined by an Enterprise Data Schema better supports the
SFA business.

Liabilities of Scenario #6

• ETL processes are often resource intensive operations. The appropriate level of resources
must be allocated to each step of the ETL process.

• Data stored in within the LDD can become out of sync with information stored in ODS.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 54

5.1.7. Scenario #7: Coordinating Transaction Processing

Purpose

This scenario describes the process of coordinating transactions between services and
domains within Department of Education’s ETA. There are three different domains. The
Enterprise Domain includes the Business Object Server, EDD and any supporting application
services. The Legacy Domain includes the LDD and the supporting legacy applications and
services. The Back Office Domain includes MS-Windows based applications that depend
upon business services provided by the Enterprise Domain to support their processing.

Transactional integrity must be maintained within and between services, domains and back
end resources in order to protect data integrity and guarantee robustness. Interfaces between
services provided by Component Broker and the MQSI servers must provide a transactional
process for ensuring the delivery messages between the servers. Transactional integrity must
also be maintained between distributed services that utilize the same back end resources. For
example, Application Business Components must have the ability to coordinate updates to
multiple databases in the EDD within a single transaction (Figure 22).

= 2 Phase
XA Complient

Transaction

LEGACY APPLICATIONS

Student
Loans

CICS DB

CICS MQ

MQ Series

MQSI

Component Broker
WebSphere EE

EJB

Java
BO

Enterprise Data Domain

Student Fiancne School DB DB
Synchronous

Asynchronous

Business
Component

Request

Figure 22 - Coordinating Transactions within the Enterprise

The process of coordinating distributed transactions must also include an exception flow
should a transaction abnormally terminate. This is especially true for message based updates
between the Enterprise and Legacy Domains. There must be a guaranteed method of
ensuring that once a message has been sent that it gets delivered to the target.

Architectural Pattern(s)

Scenario #7 is based upon the following architectural patterns:

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 55

• CORBA Services

• Enterprise Java Bean Transaction Specification (OTS)

• X/Open 2 Phase Transaction Specification

• Forward-Receiver (Provided by MQSeries)

Development Languages and Application Programming Interfaces

The following table defines the languages, APIs, and the purpose for using them within this
scenario.

Table 15 - Scenario #6 Programming Languages and API’s

Programming Language and APIs Purpose(s)

COBOL/CICS

Develop legacy application CICS interface to be used for
implementing the external legacy gateway.

Provide transactional integrity for OS/390 CICS based
applications.

CORBA Event API Leverage the CORBA event service to coordinate updates
from business components to the MQ legacy interface.

CORBA Transaction Service Enables distributed work to be conducted in a coordinated
fashion.

EJB Object Transaction Service Defines interfaces and semantics for EJB based transaction
service.

Java

Develop business components.

Develop interfaces to and from the business components to
the MQ interface.

Scenario Protocols

The following table lists the different protocols used to implement scenario #7.

Table 16 - Scenario #7 Protocols

Protocols Purpose(s)

IIOP – Internet Inter-Orb Protocol
Provide network communication for CORBA and EJB objects.

Develop business components

TCP/IP – Transmission Control Protocol / Internet Protocol Network transport protocol used from the desktop
application to the MQSI server.

APPC – SNA LU 6.2

Network transport protocol used for SNA based client server
applications.

Provides 2PC for SNA based applications.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 56

Related Architectural Scenarios

All previously defined scenarios depend upon the process defined here to coordinate
transactions.

Scenario Assumptions

The following assumptions help frame the initial state of the application before the scenario
begins:

• The example cited in this scenario is focused on coordinating transactions between the
EDD, the Business Object Server, and the Message Application Routing Service (MQSI).

• The schema defined by the EDD is fronted by Basic Business Components that provide
an object relational mapping of each table. Updates to the EDD are coordinated
exclusively through the basic business components. It is the responsibility of Application
Business Components to coordinate transactions with Basic Business Components.
Transactions may be coordinated either programmatically or directly through the
container that manages the component. The exact method depends upon the vendor
implementation of the Business Object Server.

Operational Flow of Scenario #7 – Coordinating Transactions: Normal Flow

This section defines the conceptual operational flow for coordinating transactions between
resources within Department of Education’s Enterprise Architecture. The process defined in
this section describes the normal flow for message transactions between the Business Object
Server and the Message Application Routing Service as shown in Figure 23 - Coordinating
Transactions between the MQSI and Business Object Servers.

Message
Logger

Transaction
Manager

OTS

Resource
Manager Queue

Persistence

Business Object
Server

EJB

Java
BO

MQ Server

MQSI

1

2.A 2.B

3 3

4 Send Messages
Receive Messages

Figure 23 - Coordinating Transactions between the MQSI and Business Object Servers.

1. Upon start-up of Component Broker Application Server an instance of the Transaction
Manager is initialized. Most Business Application Servers based on the CORBA or EJB

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 57

specifications use the Object Transaction Service (OTS). The OTS provides for the
implementation of transactional objects and servers.

2. The Business Object Server (2.A) and the MQ Server (2.B) register their resources with the
OTS once a request for their resources has been initiated. Some OTS vendor
implementations allow for static registration with the OTS upon start-up of the resource.
Either way the Business Object Server and the MQ Server register their resources. The
resources establish the nature of the transaction and their attributes.

A. The Business Object Server checks the Message Logger for any pending messages
that need processing. The Message Logger contains messages that were unable to be
processed since the server was shutdown. If a message exists in the Message Logger,
an error occurred while trying to forward a message to the MQSI server. If
unprocessed messages are being held in the Message Logger, they are processed
before any new messages are sent to MQSI.

B. The MQ Server checks the dead letter queue and processes any messages that could
not be delivered during the last cycle of the server. Messages that cannot be delivered
are sent to the dead letter queue and stored in long term Queue Persistence. The
processing of dead letters (undeliverable messages) is defined administratively
within MQSeries by establishing a set of rules for dealing with undeliverable
messages.

3. Messages sent by MQSI to a Component Broker server using the MQAA are placed on
the queue within a transactional context. Messages placed on a queue by the MQSI server
are coordinated with the MQSeries Transaction Manager using a 2-phase commit. The
MQSI server is notified of any failure to place a message on a target queue.

4. Messages sent by Component Broker to the MQSI server via an MQSeries queue are
transactionally coordinated through the CB OTS and the MQ Application Adapter.
Updates to the ODS are coordinated by Basic Business Components (entity objects – EJBs
or CORBA BOs) that utilize an application adapter to implement the actual update to the
database. Multiple database updates may be coordinated through a single synchronous
transaction. However, the same update may require several messages to update the
Legacy Data Domain with the same information. These messages are placed on the
queue to be sent to the MQSI server within one transactional context. This ensures that
either the whole update is sent to the LDD or none. An alternative to this method is to list
all related messages in the message header. Once the legacy gateway receives all related
messages, they are processed for update to the LDD. It is suggested that both these
precautions be taken when developing the MQSI server Figure 24 shows how a single
update initiated from an Application Business Component can translate into multiple
messages to be sent to the MQSI server.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 58

Enterprise Data Domain

Student Finance School DB DB

Component Broker
WebSphere EE

EJB

Java
BO

Update Request
Originates from a

Business
Application
Component

LEGACY APPLICATIONS

Student
Loans

CICS

DB

CICS MQ

MQ Series

MQSI

Single
TXN

Student
Loan

Options
Provider

Multiple
Messages

Student
Loan

Options
Provider

Figure 24 - Single EDD Transactions Translate into Multiple Messages

Operational Flow of Scenario #7 – Coordinating Transactions: Exception Flows

This section defines the conceptual operational flow for processing transactions that
terminate abnormally. This operational flow is focused on transactions that occur between
the WebSphere Business Object Server, Component Broker and the MQSeries Integrator.
There are two major exception flows that can occur between the CB and MQSI servers. An
abnormal termination occurs when one of the servers is unable to place a message on the
queue used to transport messages between the servers. One exception flow occurs when the
MQAA home object cannot place a message on the queue for delivery to the MQSI server.
The other exception flow occurs when the MQSI server cannot place a message on the queue
for delivery to the CB server.

Multiple updates to the EDD can be coordinated using a single transaction. This is a
synchronous update to the EDD. However, multiple messages may be necessary in order to
communicate these updates to the LDD. Therefore, a single EDD transaction may result in
one or more Service Messages that need to be routed through the MQSI server to the legacy
or back office domain. This type of update to the legacy or back office domain is
asynchronous because it is broken down into parts and transported via the queue. The
process for handling exceptions that occur during asynchronous updates is different from
synchronous updates.

The processes defined by these operational flows are applicable for handling exceptions
during transactions among other processes within the architecture.

Exception Flow for Transactions that Originate from the MQSI Server

The process defined in this section describes the exception flow that occurs when the MQSI
server is unable to place a message on the queue for delivery to the CB server (Figure 25).

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 59

Message
Logger

Transaction
Manager

OTS

Resource
Manager Message

Persistence

Component Broker
Application Server

EJB

Java
BO

MQ Server

MQSI

1

2

3
Send Messages

Error During Processing X
MQAA

Obtain Resource

Begin TXN

5

Dead Letter
Queue 4

End TXN

 Figure 25- Exception Flow for Transactions that Originate from the MQSI Server

1. The MQSI server obtains the resources for sending a message to the CB server. In this
case the resource is a reference to a queue between the MQSI server and the CB server.
There may be several queues between services. Multiple queues improve performance
through workload balancing. The Resource Manager selects the queue with the least
load.

2. The MQSI server initiates a transaction with the Transaction Manager that will be used to
coordinate the placement of messages onto the queue bound for the CB server. There
may be several messages that are part of the same transaction. The Transaction Manager
coordinates the placement of all the messages onto a queue that are part of the same
transaction. If any message fails to be placed on a queue then the previously placed
messages are rolled-back from the queue.

3. The MQSeries Transaction Manager coordinates the placement of the messages onto the
queue bound for the CB server. However, during the 2-Phase commit process an
exception occurs. For example, the queue crashes due to a hardware failure and is no
longer accessible. The transaction never completes. The CB server can perform one of the
following three options to rectify this situation.

4. Retry the transaction again and place the messages on another queue as specified by the
Transaction Manager.

5. If the transaction cannot be successfully completed then the MQSI server can place the
messages into a dead letter queue for later processing.

6. However, if a catastrophic MQSeries failure occurs then the dead letter queue may not be
available. In this case the MQSI server will temporarily store the messages in persistent
storage for future processing. The MQSI servers will then shutdown and alert the console
of the problems encountered. Once restarted the MQSI server will reprocess any
messages found in the dead letter queue or temporary message persistence.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 60

Exception Flow for Transactions that Originate from the CB Server

The process defined in this section describes the exception flow that occurs when the CB
server is unable to place a message on the queue for delivery to the MQSI server.

Dead
Message

Log

Transaction
Manager

OTS

Resource
Manager Message

Persistence

Component Broker
Application Server

EJB

Java
BO

MQ Server

MQSI

1

2

3

Send Messages
Error During ProcessingX

MQAA

Obtain Resource

Begin TXN

4 End TXN

Figure 26 - Exception Flow for Transactions that Originate from the CB Server

1. The CB server obtains the resources for sending a message to the MQSI server. In this
case the resource is a reference to a queue between the CB and MQSI servers. There may
be several queues between services. Multiple queues improve performance through
workload balancing. The Resource Manager selects the queue with the least load. This
process occurs under the hood using the CosTransaction service or the EJB OTS.

2. The Object Transaction Service [Transaction Manager] sets the scope of the transaction.
The CB server initiates a transaction with the OTS that will be used to coordinate the
placement of messages onto the queue bound for the MQSI server. There may be several
messages that are part of the same transaction. The Transaction Manager coordinates the
placement of all the messages onto a queue that are part of the same transaction. If any
message fails to be placed on a queue then the previously placed messages are rolled-
back from the queue. This process is only initiated after successful completion of the
transaction responsible for coordinating the update to the EDD with the same data.

3. The OTS coordinates the placement of the messages onto the queue bound for the MQSI
server. However, during the 2-Phase commit process an exception occurs and the
transaction aborts. For example, the queue crashes due to a hardware failure and is no
longer accessible. The CB server can perform one of the following options to rectify this
situation.

A. Retry the transaction again and place the messages on another queue as specified by
the Transaction Manager.

B. However, if a catastrophic MQSeries failure occurs then CB will be unable to send
messages via the queue through the MQAA. In this case the CB server can
temporarily store the messages in a file for persistent storage for future processing.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 61

This file is called the Dead Message Log (Figure 26). An interval can be established
for CB to examine the Dead Message Log. If the Dead Message Log is found to
contain messages then another attempt is made to send them to the MQSI server via
the queue.

Benefits of Scenario #7

The principal benefit of implementing the architecture described by scenario #7 is the ability
to coordinate distributed transactions and ensure the proper use of system resources.
Coordinating updates to back end resources using transactions guarantees database integrity
and message delivery. Other benefits of using transactions to coordinate updates with
Department of Education’s Enterprise Architecture are as follows:

• Transaction Managers make efficient use of system resources and facilitate the
implementation and administration of work-load management.

• Provides a process for safely managing system exceptions and facilitates the recovery
from system failures.

• Guarantees delivery of messages between system services that use MQSeries and the
MQSI server.

Liabilities of Scenario #7

The liabilities of implementing the architecture described in scenario #7 are as follows:

• Proper analysis and design of a transactional system is required in order to avoid
potential resource concurrency problems. Resources may become unavailable to other
processes if locked as the result of long lasting transactions.

• Performance testing must be implemented using transactional entities in order to
determine system performance requirements. Transactional systems often require
additional processing overhead.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 62

5.1.8. Scenario #8: Accessing Applications Through The DMZ

Purpose

This scenario defines a secured Internet based thin client architecture. The goal of this
architecture is to provide the security aspect of the Scenario #1 – how to handle
authentication, authorization, and message protection in a distributed object environment.

Architectural Pattern(s)

Scenario #8 is based the following architectural patterns:

• Model View Controller

• CORBA Services

• Enterprise Java Beans

• Web Servlets

• Java Server Pages (JSP)

Development Languages

The following table defines the languages and the purpose for using them with in this
scenario.

Table 17 Scenario #8 Programming Languages and APIs

Programming Languages and APIs Purpose(s)

Hypertext Markup Language – HTML

Develop the presentation of the web page.

Define the location of the web server.

Execute servlets on the server

Java

Develop business components

Develop servlets

Develop JSPs

C++ Develop CORBA business components invoked by other
business objects such as CORBA JavaBOs and EJBs.

Scenario Protocols

The following table lists the different protocols used to implement scenario #8.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 63

Table 18 - Scenario #8 Protocols

Protocols Purpose(s)

HTTPS – Hyper-Text Transport Protocol

Used to send secure information to and from the web client
and web server.

Provide encryption of html to and from browser and web
server.

HTTP – Hyper-Text Transport Protocol Used to send information to and from the web client and web
server.

SSL – Secure Sockets Layer Protocol Used to provide authentication and message protection.

PKI – Public Key Infrastructure Provide a framework that uses a pair of keys in authenticating
a principal.

IIOP – Internet Inter-Orb Protocol Provide network communication for CORBA and EJB objects.

TCP/IP – Transmission Control Protocol / Internet Protocol Network transport protocol used from client to web server

Related Architectural Scenarios

This scenario is closely related to the thin client architectural scenario. The thin client scenario
outlines an architectural pattern used to define a Internet access to enterprise resources. This
scenario assumes security access from the Internet client to the web server and between the
web server and application server.

Scenario Assumptions

The following is a list of assumptions, which help to define the state of the system before the
scenario begins:
• An application that uses HTML served by a web server. This server is capable of executing

servlets and Java Server Pages.
• Secured Access to the web server and application server.

Operational Flow of Scenario #8

This section defines the basic processing flow required to provide thin client access to
business application components.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 64

Web Client

CONTROLLER

Servlets

Result
Bean

MODEL

Component
Broker

BO

Business Application
Components

Basic Business
Components

Application Adapters / G
atew

ays,
M

essaging Layer

VIEW

JSP

Client
Framework

11

1
2

3

4

59
6

7

810

Fi
re

w
al

l

Figure 27 - Scenario #8 (Accessing Applications Through The DMZ)

The processing flow is the same as the one documented in Scenario #1. The following
discussion is focusing on the security flow where needed. Security measures are set up at the
application development and system configuration time. Most of the measures are
transparent to the end user and application operational flow.

• Arrow #1. There is a security set up process before the first web page is presented to the
user. A secure connection is established between the Browser and the Web Server using
Secure Socket Layer (SSL) protocol and Public Key Infrastructure (PKI). When the
Browser first presents a request to the Web Server, the Web Server sends back to its
certificate (server-certificate, issued by a Certificate Authority (CA)). The Browser
decrypts the server-certificate with CA’s public key and authenticates the certificate itself.
To complete the server authentication, the Browser sends a message encrypted with the
Web Server’s public key (part of the server-certificate) to the Web Server. The Web Server
decrypts the message with its private key and sends the original message along with the
answer back to the Browser. The Browser decrypts the message with the Web Server’s
public key. If the answer and message are satisfactory, the Web Server authenticity is
established. At this time, the Browser creates a session key based on the information
related to the session (e.g., date/time) and encrypts it with the Web Server’s public key
and sends it to the Web Server. Both the Browser and the Web Server then use the
session key to encrypt and decrypt subsequent messages during the session and thereby,
establish a secure communication channel between them. The setup process seems
lengthy, but it happens ‘under the cover’. The user and application are not aware of and
are not involved in it.

Using the secure channel, the Web Server can further authenticate the Browser (client) by
requesting from the Browser a user ID and password. The user ID and password is then
verified against the user registry.

• Arrow #3. The controller servlet and the application server must pass the authentication
verification upon the first method request against the application server. There are a
couple of ways for this process – 2-party and 3-party authentication. 2-party

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 65

authentication uses the PKI settings and the same SSL protocol as described above
between the Browser and the Web Server. Once authentication is satisfied, the user
ID/password can be passed to the application server using the secure channel.

3rd-party authentication involves the servlet, the application server and a trusted third
party – a security server. The servlet and the application server each authenticate itself to
the security server and each gets back a secure token, representing its authenticity. In the
servlet case, the user’s identity (user ID/password) is used when authenticating to the
security server. In the application server case, its identity is created and protected at
installation and configuration. The application server authenticates to the security server
when it is started. The tokens are passed between the servlet and the application server
and the receiver can verify it with the security server.

The application server uses the user ID/password to form a credential representing the
authenticity of the client (the user). This credential is used to enable any work initiated at
the application server under the client authority – access controls are enforced based on
the client privilege attributes.

• Arrows #4 & #5. If the server-level authorization is enabled at the application server, the
client’s authority to execute operations in the application server is based on the privilege
attributes assigned to the client’s credential and the Access Control Lists (ACLs) specified
in the server-level security domain manager. If the client is granted the operation:execute
right, the requested operation is forwarded on to the business component for execution.

If, on the other hand, the method-level authorization is enabled at the application server, the
required-rights for the invoked operation is compared to the client’s granted rights based on
the privilege attributes assigned to the client’s credential and ACLs specified in the object-
level security domain manager. If they compare positively, the requested operation is
forwarded on to the business component for execution.

There could be occasions where the logic in the business component is conditioned on the
client’s privileges. For example, the business logic wants to prevent a claim adjuster from
processing his/her own claims. To accomplish this, the adjustClaim method logic needs to
know who invoked the method.

In the implementation of the method, it first needs to get a security Current object. From
the Current object, it then gets the client’s Credential object. Finally, from the Credential
object, it gets the identity type of the privilege attribute.

• Arrow #6. The application adapter needs to form a connection with the specific database
before issuing requests to the database to obtain data for the state of the basic business
components. Assuming the installation configuration uses the authorization policies in
the data system, the application adapter retrieves the mapped security information for
the specific database from a sign-on server and logs the client in to the database as part of
connecting to it.

Benefits of Scenario #8

The benefit of scenario #8 is that it adds the security mechanisms to the distributed object
environment. It provides authentication of principals (client and server), access control, and

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 66

message protection. This greatly reduces vulnerabilities and exposures that are inherently
existed in a heterogeneous distributed systems. Additional benefits are:

• Provides a separate sign-on server that maintains legacy system login information. Each
legacy system has its own access control mechanism and there are many systems in the
existing environments (e.g., DB2, CICS, IMS, SAP). The sign-on server provides a single
and safe repository for the login information. The users have to only remember one user
ID/password and the application sever will retrieve the appropriate login information to
connect to various legacy data systems on his/her behalf.

• The 2nd firewall provides an extra layer of security to the enterprise system.

• The security mechanism follows the industry standard where they exist (e.g., CORBA
security service).

• Makes implementation of the DMZ architectural pattern easier. Separation of the web
and application servers restricts the flow of IIOP and other enterprise specific network
protocols (such as SNA) to with in the trusted network.

• No direct access to business components thereby adding a degree of security.

• Promotes load balancing and security of the physical layers – each server (web,
application, security, sign-on, database) is on a separate machine. Each server can also be
replicated for scalability.

Liabilities of Scenario #8

The liabilities of implementing applications that utilize scenario #8 are as follows:

• The security mechanism adds a lot of hand-shakes and checks in the processing.
Depending on the level of authorization enabled, it could add a fair amount of cycles to a
given method invocation.

• Separate organization must be formed to define standards for rights labels and rights
family for use in the access control. Each development staff must understand how and
when to use the correct right labels when developing method specifications.

• Separate organization must be formed to maintain the user registry. It includes user ID,
password and privilege attributes. The registry is the repository that provides key
information for authorization and access control.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 67

6 Conclusion

The technical architecture defined in this document provides a road map for transforming
Department of Education’s Enterprise Architecture into an environment that supports the
integration of disparate domains, platforms, data resources and architectural topologies. This
architecture promotes reuse through industry standard component models while supporting
the necessary qualities of service and enterprise strength scalability. The conceptual
architecture defined in this document is comprehensive. Like its legacy counterpart, the time
it will take to fully implement this architecture will be measured in years. The next step in
implementing this architecture is a series of prototypes. These prototypes will be used as test
beds to:

• Determine the best products to support the development of the architecture.

• Implement the necessary frameworks used by application development teams.

• Train the staff to develop applications using the selected products and component
models.

• Change the culture at Department of Education to embrace component based
development.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 68

7 Acronyms

Table 19 – List of Acronyms

Acronym Description

ACL Access Control Lists

AE Advanced Edition

AM Application Interface Messaging

API Application Program Interfaces

CA Certificate Authority

CB Component Broker

CICS Customer Information Control System

CORBA Common Object Request Broker Architecture

CRM Customer Relationship Management

DDL Database Definition Language

DMZ Demilitarized Zone

DOE Department of Education

DRE Dynamic Reasoning Engine

EAI Enterprise Architecture Integration

EDD Enterprise Data Domain

EJB Enterprise Java Bean

ETA Enterprise Technical Architecture

ETL Extract Transform Load

GCA Gateway CommArea

GTP Gateway Transfer Program

GUI Graphical User Interface

HPUX Hewlett-Packard UNIX

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Secure Hyper-Text Transport Protocol

IBM International Business Machine

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 69

Acronym Description

IHS IBM HTTP Server

IIOP RMI/Internet Inter-ORB Protocol

IP Internet Protocol

IT Information Technology

ITA Integrated Technical Architecture

JNDI Java Naming and Directory Interface

JSP JavaServer Pages

LDAP Lightweight Directory Access Protocol

LDD Legacy Data Domain

MQ Message Queuing

MQAA MQSeries Application Adapter

MQSI MQSeries Integrator

MS Microsoft

MVC Model-View-Controller

ODS Operational Data Stores

OLAP On-Line Analytical Processing

OLTP On-Line Transaction Processing

OO Object-Oriented

ORB Object Request Broker

OS Operating System

OTS Object Transaction Service

PAC Presentation-Abstraction-Control

PKI Public Key Infrastructure

RMI Remote Method Invocation

SFA Student Financial Assistance

SNA Systems Network Architecture

SQL Structured Query Language

SSL Secure Socket Layer

TCP Transmission Control Protocol

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 1
CONCEPTUAL ARCHITECTURE

OCTOBER 13, 20000 16 – 16.1.2 70

Acronym Description

TO Task Order

UNIX Universal Interactive Executive

URL Uniform Resource Locator

VIC Viador Information Center

WLM Workload Management

WWW World Wide Web

	Master Table of Contents

